ﻻ يوجد ملخص باللغة العربية
The important recent book by G. Schurz appreciates that the no-free-lunch theorems (NFL) have major implications for the problem of (meta) induction. Here I review the NFL theorems, emphasizing that they do not only concern the case where there is a uniform prior -- they prove that there are as many priors (loosely speaking) for which any induction algorithm $A$ out-generalizes some induction algorithm $B$ as vice-versa. Importantly though, in addition to the NFL theorems, there are many textit{free lunch} theorems. In particular, the NFL theorems can only be used to compare the textit{marginal} expected performance of an induction algorithm $A$ with the marginal expected performance of an induction algorithm $B$. There is a rich set of free lunches which instead concern the statistical correlations among the generalization errors of induction algorithms. As I describe, the meta-induction algorithms that Schurz advocate as a solution to Humes problem are just an example of such a free lunch based on correlations among the generalization errors of induction algorithms. I end by pointing out that the prior that Schurz advocates, which is uniform over bit frequencies rather than bit patterns, is contradicted by thousands of experiments in statistical physics and by the great success of the maximum entropy procedure in inductive inference.
The No Free Lunch theorems prove that under a uniform distribution over induction problems (search problems or learning problems), all induction algorithms perform equally. As I discuss in this chapter, the importance of the theorems arises by using
The ultimate limits for the quantum machine learning of quantum data are investigated by obtaining a generalisation of the celebrated No Free Lunch (NFL) theorem. We find a lower bound on the quantum risk (the probability that a trained hypothesis is
A precondition for a No Free Lunch theorem is evaluation with a loss function which does not assume a priori superiority of some outputs over others. A previous result for community detection by Peel et al. (2017) relies on a mismatch between the los
Microservice architecture advocates a number of technologies and practices such as lightweight container, container orchestration, and DevOps, with the promised benefits of faster delivery, improved scalability, and greater autonomy. However, microse
We propose a new approach to visualize saliency maps for deep neural network models and apply it to deep reinforcement learning agents trained on Atari environments. Our method adds an attention module that we call FLS (Free Lunch Saliency) to the fe