ﻻ يوجد ملخص باللغة العربية
We analyze a set of volume limited sample of galaxies from the SDSS to study the issue of cosmic homogeneity. We use the Renyi entropy of different order to probe the inhomogeneties present in the galaxy distributions. We also calculate the Renyi diveregence to quantify the deviations of the galaxy distribution from a homogeneous Poisson distribution on different length scales. We separately carry out the analysis using the overlapping spheres and the independent voxels. Our analysis suggests that the scale of homogeneity is underestimated in the smaller galaxy samples due to the suppression of inhomogeneities by the overlapping of the measuring speheres. We find that an analysis with the independent voxels and/or use of a significantly larger galaxy sample can help to circumvent or mitigate this problem. Combining the results from these analyses, we find that the galaxy distribution in the SDSS becomes homogeneous on a length scale beyond $140 , h^{-1}, {rm Mpc}$.
The assumption that the Universe, on sufficiently large scales, is homogeneous and isotropic is crucial to our current understanding of cosmology. In this paper we test if the observed galaxy distribution is actually homogeneous on large scales. We h
According to the cosmological principle, galaxy cluster sizes and cluster densities, when averaged over sufficiently large volumes of space, are expected to be constant everywhere, except for a slow variation with look-back time (redshift). Thus, ave
We propose a method for testing homogeneity in three dimensional spatial distributions using Renyi entropy. We apply the proposed method to data from cosmological N-body simulations and Monte Carlo simulations of homogeneous Poisson point process. We
Despite its fundamental importance in cosmology, there have been very few straight-forward tests of the cosmological principle. Such tests are especially timely because of the hemispherical asymmetry in the cosmic microwave background recently observ
Detecting the large-scale structure of the Universe based on the galaxy distribution and characterising its components is of fundamental importance in astrophysics but is also a difficult task to achieve. Wide-area spectroscopic redshift surveys are