ﻻ يوجد ملخص باللغة العربية
We consider the problem of the extraction of semantic attributes, supervised only with classification labels. For example, when learning to classify images of birds into species, we would like to observe the emergence of features that zoologists use to classify birds. To tackle this problem, we propose training a neural network with discrete features in the last layer, which is followed by two heads: a multi-layered perceptron (MLP) and a decision tree. Since decision trees utilize simple binary decision stumps we expect those discrete features to obtain semantic meaning. We present a theoretical analysis as well as a practical method for learning in the intersection of two hypothesis classes. Our results on multiple benchmarks show an improved ability to extract a set of features that are highly correlated with the set of unseen attributes.
Scene Graph Generation (SGG) aims to extract entities, predicates and their semantic structure from images, enabling deep understanding of visual content, with many applications such as visual reasoning and image retrieval. Nevertheless, existing SGG
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels
Acquiring sufficient ground-truth supervision to train deep visual models has been a bottleneck over the years due to the data-hungry nature of deep learning. This is exacerbated in some structured prediction tasks, such as semantic segmentation, whi
Weakly Supervised Semantic Segmentation (WSSS) based on image-level labels has been greatly advanced by exploiting the outputs of Class Activation Map (CAM) to generate the pseudo labels for semantic segmentation. However, CAM merely discovers seeds
This paper presents a novel semantic scene change detection scheme with only weak supervision. A straightforward approach for this task is to train a semantic change detection network directly from a large-scale dataset in an end-to-end manner. Howev