ﻻ يوجد ملخص باللغة العربية
Online hate speech is an important issue that breaks the cohesiveness of online social communities and even raises public safety concerns in our societies. Motivated by this rising issue, researchers have developed many traditional machine learning and deep learning methods to detect hate speech in online social platforms automatically. However, most of these methods have only considered single type textual feature, e.g., term frequency, or using word embeddings. Such approaches neglect the other rich textual information that could be utilized to improve hate speech detection. In this paper, we propose DeepHate, a novel deep learning model that combines multi-faceted text representations such as word embeddings, sentiments, and topical information, to detect hate speech in online social platforms. We conduct extensive experiments and evaluate DeepHate on three large publicly available real-world datasets. Our experiment results show that DeepHate outperforms the state-of-the-art baselines on the hate speech detection task. We also perform case studies to provide insights into the salient features that best aid in detecting hate speech in online social platforms.
With growing role of social media in shaping public opinions and beliefs across the world, there has been an increased attention to identify and counter the problem of hate speech on social media. Hate speech on online spaces has serious manifestatio
Hate speech has grown significantly on social media, causing serious consequences for victims of all demographics. Despite much attention being paid to characterize and detect discriminatory speech, most work has focused on explicit or overt hate spe
In current hate speech datasets, there exists a high correlation between annotators perceptions of toxicity and signals of African American English (AAE). This bias in annotated training data and the tendency of machine learning models to amplify it
With increasing popularity of social media platforms hate speech is emerging as a major concern, where it expresses abusive speech that targets specific group characteristics, such as gender, religion or ethnicity to spread violence. Earlier people u
In recent years, Hate Speech Detection has become one of the interesting fields in natural language processing or computational linguistics. In this paper, we present the description of our system to solve this problem at the VLSP shared task 2019: H