ترغب بنشر مسار تعليمي؟ اضغط هنا

Project-Level Encoding for Neural Source Code Summarization of Subroutines

75   0   0.0 ( 0 )
 نشر من قبل Aakash Bansal
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Source code summarization of a subroutine is the task of writing a short, natural language description of that subroutine. The description usually serves in documentation aimed at programmers, where even brief phrase (e.g. compresses data to a zip file) can help readers rapidly comprehend what a subroutine does without resorting to reading the code itself. Techniques based on neural networks (and encoder-decoder model designs in particular) have established themselves as the state-of-the-art. Yet a problem widely recognized with these models is that they assume the information needed to create a summary is present within the code being summarized itself - an assumption which is at odds with program comprehension literature. Thus a current research frontier lies in the question of encoding source code context into neural models of summarization. In this paper, we present a project-level encoder to improve models of code summarization. By project-level, we mean that we create a vectorized representation of selected code files in a software project, and use that representation to augment the encoder of state-of-the-art neural code summarization techniques. We demonstrate how our encoder improves several existing models, and provide guidelines for maximizing improvement while controlling time and resource costs in model size.



قيم البحث

اقرأ أيضاً

A question answering (QA) system is a type of conversational AI that generates natural language answers to questions posed by human users. QA systems often form the backbone of interactive dialogue systems, and have been studied extensively for a wid e variety of tasks ranging from restaurant recommendations to medical diagnostics. Dramatic progress has been made in recent years, especially from the use of encoder-decoder neural architectures trained with big data input. In this paper, we take initial steps to bringing state-of-the-art neural QA technologies to Software Engineering applications by designing a context-based QA system for basic questions about subroutines. We curate a training dataset of 10.9 million question/context/answer tuples based on rules we extract from recent empirical studies. Then, we train a custom neural QA model with this dataset and evaluate the model in a study with professional programmers. We demonstrate the strengths and weaknesses of the system, and lay the groundwork for its use in eventual dialogue systems for software engineering.
111 - Ensheng Shi , Yanlin Wang , Lun Du 2021
Source code summaries are important for the comprehension and maintenance of programs. However, there are plenty of programs with missing, outdated, or mismatched summaries. Recently, deep learning techniques have been exploited to automatically gene rate summaries for given code snippets. To achieve a profound understanding of how far we are from solving this problem, in this paper, we conduct a systematic and in-depth analysis of five state-of-the-art neural source code summarization models on three widely used datasets. Our evaluation results suggest that: (1) The BLEU metric, which is widely used by existing work for evaluating the performance of the summarization models, has many variants. Ignoring the differences among the BLEU variants could affect the validity of the claimed results. Furthermore, we discover an important, previously unknown bug about BLEU calculation in a commonly-used software package. (2) Code pre-processing choices can have a large impact on the summarization performance, therefore they should not be ignored. (3) Some important characteristics of datasets (corpus size, data splitting method, and duplication ratio) have a significant impact on model evaluation. Based on the experimental results, we give some actionable guidelines on more systematic ways for evaluating code summarization and choosing the best method in different scenarios. We also suggest possible future research directions. We believe that our results can be of great help for practitioners and researchers in this interesting area.
Source code summaries are short natural language descriptions of code snippets that help developers better understand and maintain source code. There has been a surge of work on automatic code summarization to reduce the burden of writing summaries m anually. However, most contemporary approaches mainly leverage the information within the boundary of the method being summarized (i.e., local context), and ignore the broader context that could assist with code summarization. This paper explores two global contexts, namely intra-class and inter-class contexts, and proposes the model CoCoSUM: Contextual Code Summarization with Multi-Relational Graph Neural Networks. CoCoSUM first incorporates class names as the intra-class context to generate the class semantic embeddings. Then, relevant Unified Modeling Language (UML) class diagrams are extracted as inter-class context and are encoded into the class relational embeddings using a novel Multi-Relational Graph Neural Network (MRGNN). Class semantic embeddings and class relational embeddings, together with the outputs from code token encoder and AST encoder, are passed to a decoder armed with a two-level attention mechanism to generate high-quality, context-aware code summaries. We conduct extensive experiments to evaluate our approach and compare it with other automatic code summarization models. The experimental results show that CoCoSUM is effective and outperforms state-of-the-art methods. Our source code and experimental data are available in the supplementary materials and will be made publicly available.
Source code summarization aims at generating concise descriptions of given programs functionalities. While Transformer-based approaches achieve promising performance, they do not explicitly incorporate the code structure information which is importan t for capturing code semantics. Besides, without explicit constraints, multi-head attentions in Transformer may suffer from attention collapse, leading to poor code representations for summarization. Effectively integrating the code structure information into Transformer is under-explored in this task domain. In this paper, we propose a novel approach named SG-Trans to incorporate code structural properties into Transformer. Specifically, to capture the hierarchical characteristics of code, we inject the local symbolic information (e.g., code tokens) and global syntactic structure (e.g., data flow) into the self-attention module as inductive bias. Extensive evaluation shows the superior performance of SG-Trans over the state-of-the-art approaches.
In recent years, Neural Machine Translator (NMT) has shown promise in automatically editing source code. Typical NMT based code editor only considers the code that needs to be changed as input and suggests developers with a ranked list of patched cod e to choose from - where the correct one may not always be at the top of the list. While NMT based code editing systems generate a broad spectrum of plausible patches, the correct one depends on the developers requirement and often on the context where the patch is applied. Thus, if developers provide some hints, using natural language, or providing patch context, NMT models can benefit from them. As a proof of concept, in this research, we leverage three modalities of information: edit location, edit code context, commit messages (as a proxy of developers hint in natural language) to automatically generate edits with NMT models. To that end, we build MODIT, a multi-modal NMT based code editing engine. With in-depth investigation and analysis, we show that developers hint as an input modality can narrow the search space for patches and outperform state-of-the-art models to generate correctly patched code in top-1 position.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا