Convex Parameterization and Optimization for Robust Tracking of a Magnetically Levitated Planar Positioning System


الملخص بالإنكليزية

Magnetic levitation positioning technology has attracted considerable research efforts and dedicated attention due to its extremely attractive features. The technology offers high-precision, contactless, dust/lubricant-free, multi-axis, and large-stroke positioning. In this work, we focus on the accurate and smooth tracking problem of a multi-axis magnetically levitated (maglev) planar positioning system for a specific S-curve reference trajectory. The floating characteristics and the multi-axis coupling make accurate identification of the system dynamics difficult, which lead to a challenge to design a high performance control system. Here, the tracking task is achieved by a 2-Degree of Freedom (DoF) controller consisting of a feedforward controller and a robust stabilizing feedback controller with a prescribed sparsity pattern. The approach proposed in this paper utilizes the basis of an H-infinity controller formulation and a suitably established convex inner approximation. Particularly, a subset of robust stabilizable controllers with prescribed structural constraints is characterized in the parameter space, and so thus the re-formulated convex optimization problem can be easily solved by several powerful numerical algorithms and solvers. With this approach, the robust stability of the overall system is ensured with a satisfactory system performance despite the presence of parametric uncertainties. Furthermore, experimental results clearly demonstrate the effectiveness of the proposed approach.

تحميل البحث