The Neural Tangent Kernel (NTK) has recently attracted intense study, as it describes the evolution of an over-parameterized Neural Network (NN) trained by gradient descent. However, it is now well-known that gradient descent is not always a good optimizer for NNs, which can partially explain the unsatisfactory practical performance of the NTK regression estimator. In this paper, we introduce the Weighted Neural Tangent Kernel (WNTK), a generalized and improved tool, which can capture an over-parameterized NNs training dynamics under different optimizers. Theoretically, in the infinite-width limit, we prove: i) the stability of the WNTK at initialization and during training, and ii) the equivalence between the WNTK regression estimator and the corresponding NN estimator with different learning rates on different parameters. With the proposed weight update algorithm, both empirical and analytical WNTKs outperform the corresponding NTKs in numerical experiments.