ﻻ يوجد ملخص باللغة العربية
The Neural Tangent Kernel (NTK) has recently attracted intense study, as it describes the evolution of an over-parameterized Neural Network (NN) trained by gradient descent. However, it is now well-known that gradient descent is not always a good optimizer for NNs, which can partially explain the unsatisfactory practical performance of the NTK regression estimator. In this paper, we introduce the Weighted Neural Tangent Kernel (WNTK), a generalized and improved tool, which can capture an over-parameterized NNs training dynamics under different optimizers. Theoretically, in the infinite-width limit, we prove: i) the stability of the WNTK at initialization and during training, and ii) the equivalence between the WNTK regression estimator and the corresponding NN estimator with different learning rates on different parameters. With the proposed weight update algorithm, both empirical and analytical WNTKs outperform the corresponding NTKs in numerical experiments.
The study of deep neural networks (DNNs) in the infinite-width limit, via the so-called neural tangent kernel (NTK) approach, has provided new insights into the dynamics of learning, generalization, and the impact of initialization. One key DNN archi
A remarkable recent discovery in machine learning has been that deep neural networks can achieve impressive performance (in terms of both lower training error and higher generalization capacity) in the regime where they are massively over-parameteriz
Kernels derived from deep neural networks (DNNs) in the infinite-width provide not only high performance in a range of machine learning tasks but also new theoretical insights into DNN training dynamics and generalization. In this paper, we extend th
The Neural Tangent Kernel (NTK) has discovered connections between deep neural networks and kernel methods with insights of optimization and generalization. Motivated by this, recent works report that NTK can achieve better performances compared to t
We present a novel neural network Maximum Mean Discrepancy (MMD) statistic by identifying a connection between neural tangent kernel (NTK) and MMD statistic. This connection enables us to develop a computationally efficient and memory-efficient appro