ﻻ يوجد ملخص باللغة العربية
The high solubility of oxygen in Ti, Zr and Hf makes it difficult to stabilize the protective oxide scales on their surfaces as the subsurface regions can serve as boundless sinks that continuously dissolve oxygen. Alloying elements are crucial to reduce the oxygen solubility and diffusivity within early transition metals. Past studies have shown that substitutional alloying additions to titanium repel interstitial oxygen. Here we use first-principles calculations to show that this repulsion is short ranged and identify a variety of factors that are likely responsible for the repulsive interaction. We identify a unique hybridization phenomenon between dissolved substitutional elements and interstitial oxygen within hcp Ti that leads to a repulsive interaction at short distances, similar to that between closed-shell atoms. Calculations of Bader charges also suggest the existence of short-range Coulomb interactions due to the accumulation of charge on the substitutional solute and interstitial oxygen that is drawn from the Ti host.
Nucleation and growth of Ti$_3$Al textalpha{}$_2$ ordered domains in textalpha{}-Ti--Al--X alloys were characterised using a combination of transmission electron microscopy, atom probe tomography and small angle X-ray scattering. Model alloys based o
Computational atomic-scale methods continue to provide new information about geometry, energetics, and transition states for interstitial elements in crystalline lattices. This data can be used to determine the diffusivity of interstitials by finding
The electronic structure of interstitial hydrogen in a compound semiconductor FeS$_2$ (naturally $n$-type) is inferred from a muon study. An implanted muon (Mu, a pseudo-hydrogen) forms electronically different defect centers discerned by the hyperfi
Recent experiments showed that Co undergoes a phase transition from ferromagnetic hcp phase to non-magnetic fcc one around 100 GPa. Since the transition is of first order, a certain region of co-existence of the two phases is present. By means of tex
We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compar