ﻻ يوجد ملخص باللغة العربية
Correlated band theory implemented as a combination of density functional theory with exact diagonalization [DFT+U(ED)] of the Anderson impurity term with Coulomb repulsion $U$ in the open 14-orbital $5f$ shell is applied to UTe$_2$. The small gap for $U$=0, evidence of the half-filled $j=frac{5}{2}$ subshell of $5f^3$ uranium, is converted for $U$=3 eV to a flat band semimetal with small heavy-carrier Fermi surfaces that will make properties sensitive to pressure, magnetic field, and off-stoichiometry, as observed experimentally. The predicted Kondo temperature around 100 K matches the experimental values from resistivity. The electric field gradients for the two Te sites are calculated by DFT+U(ED) to differ by a factor of seven, indicating a strong site distinction, while the anisotropy factor $eta=0.18$ is similar for all three sites. The calculated uranium moment $<M^2>^{1/2}$ of 3.5$mu_B$ is roughly consistent with the published experimental Curie-Weiss values of 2.8$mu_B$ and 3.3$mu_B$ (which are field-direction dependent), and the calculated separate spin and orbital moments are remarkably similar to Hunds rule values for an $f^3$ ion. The $U$=3 eV spectral density is compared with angle-integrated and angle-resolved photoemission spectra, with agreement that there is strong $5f$ character at, and for several hundred meV below, the Fermi energy. Our results support the picture that the underlying ground state of UTe$_2$ is that of a half-filled $j=frac{5}{2}$ subshell with two half-filled $m_j=pmfrac{1}{2}$ orbitals forming a narrow gap by hybridization, then driven to a conducting state by configuration mixing (spin-charge fluctuations). UTe$_2$ displays similarities to UPt$_3$ with its $5f$ dominated Fermi surfaces rather than a strongly localized Kondo lattice system.
Inelastic-neutron-scattering measurements were performed on a single crystal of the heavy-fermion paramagnet UTe$_2$ above its superconducting temperature. We confirm the presence of antiferromagnetic fluctuations with the incommensurate wavevector $
As the smallest exceptional Lie group and the automorphism group of the non-associative algebra of octonions, G$_2$ is often employed for describing exotic symmetry structures. We prove a G$_2$ symmetry in a Hubbard-like model with spin-$frac{3}{2}$
Rare 4f^2-based heavy-fermion behaviors have been revealed recently in Pr-based filled skutterudites PrFe4P12 and PrOs4Sb12. Recent studies on the thermal properties on both compounds are reported, putting emphasis on the field-induced ordered phase found in PrOs4Sb12.
We use quantum Monte Carlo methods and single-mode approximation to study the magnon dispersion in the 2D half-filled Hubbard and phonon-coupled Heisenberg models. We find that in the Hubbard model with $U/t< 8$, high-energy magnon dispersion is simi
We present a study of the upper critical field of the newly discovered heavy fermion superconductor UTe$_2$ by magnetoresistivity measurements in pulsed magnetic fields up to 60~T and static magnetic fields up to 35~T. We show that superconductivity