ﻻ يوجد ملخص باللغة العربية
Introduction: Treating pregnant women in the radiotherapy clinic is a rare occurrence. When it does occur, it is vital that the dose received by the developing embryo or foetus is understood as fully as possible. This study presents the first investigation of foetal doses delivered during helical tomotherapy treatments. Materials & Methods: Six treatment plans were delivered to an anthropomorphic phantom using a tomotherapy machine. These included treatments of the brain, unilateral and bilateral head-and-neck, chest wall, and upper lung. Measurements of foetal dose were made with an ionisation chamber positioned at various locations longitudinally within the phantom to simulate a variety of patient anatomies. Results: All measurements were below the established limit of 100 mGy for a high risk of damage during the first trimester. The largest dose encountered was 75 mGy (0.125% of prescription dose). The majority of treatments with measurement positions less than 30 cm fell into the range of uncertain risk (50 - 100 mGy). All treatments with measurement positions beyond 30 cm fell into the low risk category (< 50 mGy). Conclusions: For the cases in this study, tomotherapy resulted in foetal doses that are at least on par with, if not significantly lower than, similar 3D conformal or intensity-modulated treatments delivered with other devices. Recommendations were also provided for estimating foetal doses from tomotherapy plans.
Statistical iterative reconstruction is expected to improve the image quality of megavoltage computed tomography (MVCT). However, one of the challenges of iterative reconstruction is its large computational cost. The purpose of this work is to develo
This paper focuses on some dosimetry aspects of proton therapy and pencil beam scanning based on the experience accumulated at Paul Scherrer Institute(PSI). The basic formalism for absolute dosimetry in proton therapy is outlined and the two main tec
A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB alg
Purpose: To develop a model to generate volumetric dose distribution from two isodose surfaces (iso-surfaces), and to interactively tune dose distribution by iso-surface dragging. Methods: We model volumetric dose distribution as analytical extension
To compare the dosimetrical differences between plans generated by helical tomotherapy using 2D or 3D margining technique in in prostate cancer. Ten prostate cancer patients were included in this study. For 2D plans, planning target volume (PTV) was