ﻻ يوجد ملخص باللغة العربية
Low rank tensor approximation is a fundamental tool in modern machine learning and data science. In this paper, we study the characterization, perturbation analysis, and an efficient sampling strategy for two primary tensor CUR approximations, namely Chidori and Fiber CUR. We characterize exact tensor CUR decompositions for low multilinear rank tensors. We also present theoretical error bounds of the tensor CUR approximations when (adversarial or Gaussian) noise appears. Moreover, we show that low cost uniform sampling is sufficient for tensor CUR approximations if the tensor has an incoherent structure. Empirical performance evaluations, with both synthetic and real-world datasets, establish the speed advantage of the tensor CUR approximations over other state-of-the-art low multilinear rank tensor approximations.
Hermitian tensors are generalizations of Hermitian matrices, but they have very different properties. Every complex Hermitian tensor is a sum of complex Hermitian rank-1 tensors. However, this is not true for the real case. We study basic properties
This paper discusses the problem of symmetric tensor decomposition on a given variety $X$: decomposing a symmetric tensor into the sum of tensor powers of vectors contained in $X$. In this paper, we first study geometric and algebraic properties of s
Low-rank Tucker and CP tensor decompositions are powerful tools in data analytics. The widely used alternating least squares (ALS) method, which solves a sequence of over-determined least squares subproblems, is costly for large and sparse tensors. W
The orthogonal decomposition factorizes a tensor into a sum of an orthogonal list of rankone tensors. We present several properties of orthogonal rank. We find that a subtensor may have a larger orthogonal rank than the whole tensor and prove the low
This paper studies how to learn parameters in diagonal Gaussian mixture models. The problem can be formulated as computing incomplete symmetric tensor decompositions. We use generating polynomials to compute incomplete symmetric tensor decompositions