ترغب بنشر مسار تعليمي؟ اضغط هنا

How gas flows shape the stellar-halo mass relation in the EAGLE simulation

73   0   0.0 ( 0 )
 نشر من قبل Peter Mitchell
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The difference in shape between the observed galaxy stellar mass function and the predicted dark matter halo mass function is generally explained primarily by feedback processes. Feedback can shape the stellar-halo mass (SHM) relation by driving gas out of galaxies, by modulating the first-time infall of gas onto galaxies (i.e., preventative feedback), and by instigating fountain flows of recycled wind material. We present a novel method to disentangle these effects for hydrodynamical simulations of galaxy formation. We build a model of linear coupled differential equations that by construction reproduces the flows of gas onto and out of galaxies and haloes in the EAGLE cosmological simulation. By varying individual terms in this model, we isolate the relative effects of star formation, ejection via outflow, first-time inflow and wind recycling on the SHM relation. We find that for halo masses $M_{200} < 10^{12} , mathrm{M_odot}$ the SHM relation is shaped primarily by a combination of ejection from galaxies and haloes, while for larger $M_{200}$ preventative feedback is also important. The effects of recycling and the efficiency of star formation are small. We show that if, instead of $M_{200}$, we use the cumulative mass of dark matter that fell in for the first time, the evolution of the SHM relation nearly vanishes. This suggests that the evolution is due to the definition of halo mass rather than to an evolving physical efficiency of galaxy formation. Finally, we demonstrate that the mass in the circum-galactic medium is much more sensitive to gas flows, especially recycling, than is the case for stars and the interstellar medium.



قيم البحث

اقرأ أيضاً

Empirical models of galaxy formation require assumptions about the correlations between galaxy and halo properties. These may be calibrated against observations or inferred from physical models such as hydrodynamical simulations. In this Letter, we u se the EAGLE simulation to investigate the correlation of galaxy size with halo properties. We motivate this analysis by noting that the common assumption of angular momentum partition between baryons and dark matter in rotationally supported galaxies overpredicts both the spread in the stellar mass-size relation and the anticorrelation of size and velocity residuals, indicating a problem with the galaxy-halo connection it implies. We find the EAGLE galaxy population to perform significantly better on both statistics, and trace this success to the weakness of the correlations of galaxy size with halo mass, concentration and spin at fixed stellar mass. Using these correlations in empirical models will enable fine-grained aspects of galaxy scalings to be matched.
A large variance exists in the amplitude of the Stellar Mass - Halo Mass (SMHM) relation for group and cluster-size halos. Using a sample of 254 clusters, we show that the magnitude gap between the brightest central galaxy (BCG) and its second or fou rth brightest neighbor accounts for a significant portion of this variance. We find that at fixed halo mass, galaxy clusters with a higher magnitude gap have a higher BCG stellar mass. This relationship is also observed in semi-analytic representations of low-redshift galaxy clusters in simulations. This SMHM-magnitude gap stratification likely results from BCG growth via hierarchical mergers and may link assembly of the halo with the growth of the BCG. Using a Bayesian model, we quantify the importance of the magnitude gap in the SMHM relation using a multiplicative stretch factor, which we find to be significantly non-zero. The inclusion of the magnitude gap in the SMHM relation results in a large reduction in the inferred intrinsic scatter in the BCG stellar mass at fixed halo mass. We discuss the ramifications of this result in the context of galaxy formation models of centrals in group and cluster-sized halos.
The metallicity of star-forming gas in galaxies from the EAGLE simulations increases with stellar mass. Here we investigate whether the scatter around this relation correlates with morphology and/or stellar kinematics. At redshift $z=0$, galaxies wit h more rotational support have lower metallicities on average when the stellar mass is below $M_starapprox 10^{10}~{rm M}_odot$. This trend inverts at higher values of $M_star$, when prolate galaxies show typically lower metallicity. At increasing redshifts, the trend between rotational support and metallicity becomes weaker at low stellar mass but more pronounced at high stellar mass. We argue that the secondary dependence of metallicity on stellar kinematics is another manifestation of the observed anti-correlation between metallicity and star formation rate at a given stellar mass. At low masses, such trends seem to be driven by the different star-formation histories of galaxies and stellar feedback. At high masses, feedback from active galactic nuclei and galaxy mergers play a dominant role.
The connection between dark matter halos and galactic baryons is often not well-constrained nor well-resolved in cosmological hydrodynamical simulations. Thus, Halo Occupation Distribution (HOD) models that assign galaxies to halos based on halo mass are frequently used to interpret clustering observations, even though it is well-known that the assembly history of dark matter halos is related to their clustering. In this paper we use high-resolution hydrodynamical cosmological simulations to compare the halo and stellar mass growth of galaxies in a large-scale overdensity to those in a large-scale underdensity (on scales of about 20 Mpc). The simulation reproduces assembly bias, that halos have earlier formation times in overdense environments than in underdense regions. We find that the stellar mass to halo mass ratio is larger in overdense regions in central galaxies residing in halos with masses between 10$^{11}$-10$^{12.9}$ M$_{odot}$. When we force the local density (within 2 Mpc) at z=0 to be the same for galaxies in the large-scale over- and underdensities, we find the same results. We posit that this difference can be explained by a combination of earlier formation times, more interactions at early times with neighbors, and more filaments feeding galaxies in overdense regions. This result puts the standard practice of assigning stellar mass to halos based only on their mass, rather than considering their larger environment, into question.
We quantify evolution in the cluster scale stellar mass - halo mass (SMHM) relations parameters using 2323 clusters and brightest central galaxies (BCGs) over the redshift range $0.03 le z le 0.60$. The precision on inferred SMHM parameters is improv ed by including the magnitude gap ($rm m_{gap}$) between the BCG and fourth brightest cluster member (M14) as a third parameter in the SMHM relation. At fixed halo mass, accounting for $rm m_{gap}$, through a stretch parameter, reduces the SMHM relations intrinsic scatter. To explore this redshift range, we use clusters, BCGs, and cluster members identified using the Sloan Digital Sky Survey C4 and redMaPPer cluster catalogs and the Dark Energy Survey redMaPPer catalog. Through this joint analysis, we detect no systematic differences in BCG stellar mass, $rm m_{gap}$, and cluster mass (inferred from richness) between the datsets. We utilize the Pareto function to quantify each parameters evolution. We confirm prior findings of negative evolution in the SMHM relations slope (3.5$sigma$) and detect negative evolution in the stretch parameter (4.0$sigma$) and positive evolution in the offset parameter (5.8$sigma$). This observed evolution, combined with the absence of BCG growth, when stellar mass is measured within 50kpc, suggests that this evolution results from changes in the clusters $rm m_{gap}$. For this to occur, late-term growth must be in the intra-cluster light surrounding the BCG. We also compare the observed results to Illustris TNG 300-1 cosmological hydrodynamic simulations and find modest qualitative agreement. However, the simulations lack the evolutionary features detected in the real data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا