ﻻ يوجد ملخص باللغة العربية
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States. Many efforts have been made to understand the causes of the increases in wildfire intensity and frequency in recent years. In this work, we propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California by utilizing a multitude of environmental data including population density, Normalized Difference Vegetation Index (NDVI), Palmer Drought Severity Index (PDSI), tree mortality area, tree mortality number, and altitude. Moreover, we focus on a better understanding of the impacts of different factors so as to inform preventive actions. To validate our models and findings, we divide the land of California into 4,242 grids of 0.1 degrees $times$ 0.1 degrees in latitude and longitude, and compute the risk of each grid based on spatial and temporal conditions. To verify the generalizability of our models, we further expand the scope of wildfire risk assessment from California to Washington without any fine tuning. By performing counterfactual analysis, we uncover the effects of several possible methods on reducing the number of high risk wildfires. Taken together, our study has the potential to estimate, monitor, and reduce the risks of wildfires across diverse areas provided that such environment data is available.
We exploit liver cancer prediction model using machine learning algorithms based on epidemiological data of over 55 thousand peoples from 2014 to the present. The best performance is an AUC of 0.71. We analyzed model parameters to investigate critica
Recovery from the Flint Water Crisis has been hindered by uncertainty in both the water testing process and the causes of contamination. In this work, we develop an ensemble of predictive models to assess the risk of lead contamination in individual
Nanotechnology is a so-called key-emerging technology that opens a new world of technological innovation. The novelty of engineered nanomaterials (ENMs) raises concern over their possible adverse effect to man and the environment. Thereupon, risk ass
We study the problem of maximizing a non-monotone submodular function under multiple knapsack constraints. We propose a simple discrete greedy algorithm to approach this problem, and prove that it yields strong approximation guarantees for functions
Successful health risk prediction demands accuracy and reliability of the model. Existing predictive models mainly depend on mining electronic health records (EHR) with advanced deep learning techniques to improve model accuracy. However, they all ig