ﻻ يوجد ملخص باللغة العربية
Electroencephalogram (EEG) monitoring and objective seizure identification is an essential clinical investigation for some patients with epilepsy. Accurate annotation is done through a time-consuming process by EEG specialists. Computer-assisted systems for seizure detection currently lack extensive clinical utility due to retrospective, patient-specific, and/or irreproducible studies that result in low sensitivity or high false positives in clinical tests. We aim to significantly reduce the time and resources on data annotation by demonstrating a continental generalization of seizure detection that balances sensitivity and specificity. This is a prospective inference test of artificial intelligence on nearly 14,590 hours of adult EEG data from patients with epilepsy between 2011 and 2019 in a hospital in Sydney, Australia. The inference set includes patients with different types and frequencies of seizures across a wide range of ages and EEG recording hours. We validated our inference model in an AI-assisted mode with a human expert arbiter and a result review panel of expert neurologists and EEG specialists on 66 sessions to demonstrate achievement of the same performance with over an order-of-magnitude reduction in time. Our inference on 1,006 EEG recording sessions on the Australian dataset achieved 76.68% with nearly 56 [0, 115] false alarms per 24 hours on average, against legacy ground-truth annotations by human experts, conducted independently over nine years. Our pilot test of 66 sessions with a human arbiter, and reviewed ground truth by a panel of experts, confirmed an identical human performance of 92.19% with an AI-assisted system, while the time requirements reduce significantly from 90 to 7.62 minutes on average.
Computer-Aided Diagnosis (CAD) systems for chest radiographs using artificial intelligence (AI) have recently shown a great potential as a second opinion for radiologists. The performances of such systems, however, were mostly evaluated on a fixed da
While micro-CT systems are instrumental in preclinical research, clinical micro-CT imaging has long been desired with cochlear implantation as a primary example. The structural details of the cochlear implant and the temporal bone require a significa
Purpose: A Monte Carlo (MC) beam model and its implementation in a clinical treatment planning system (TPS, Varian Eclipse) are presented for a modified ultra-high dose-rate electron FLASH radiotherapy (eFLASH-RT) LINAC. Methods: The gantry head wi
Clinical machine learning models experience significantly degraded performance in datasets not seen during training, e.g., new hospitals or populations. Recent developments in domain generalization offer a promising solution to this problem by creati
Approximately, 50 million people in the world are affected by epilepsy. For patients, the anti-epileptic drugs are not always useful and these drugs may have undesired side effects on a patients health. If the seizure is predicted the patients will h