ﻻ يوجد ملخص باللغة العربية
Deep neural networks have been well-known for their superb performance in handling various machine learning and artificial intelligence tasks. However, due to their over-parameterized black-box nature, it is often difficult to understand the prediction results of deep models. In recent years, many interpretation tools have been proposed to explain or reveal the ways that deep models make decisions. In this paper, we review this line of research and try to make a comprehensive survey. Specifically, we introduce and clarify two basic concepts-interpretations and interpretability-that people usually get confused. First of all, to address the research efforts in interpretations, we elaborate the design of several recent interpretation algorithms, from different perspectives, through proposing a new taxonomy. Then, to understand the results of interpretation, we also survey the performance metrics for evaluating interpretation algorithms. Further, we summarize the existing work in evaluating models interpretability using trustworthy interpretation algorithms. Finally, we review and discuss the connections between deep models interpretations and other factors, such as adversarial robustness and data augmentations, and we introduce several open-source libraries for interpretation algorithms and evaluation approaches.
As machine learning algorithms getting adopted in an ever-increasing number of applications, interpretation has emerged as a crucial desideratum. In this paper, we propose a mathematical definition for the human-interpretable model. In particular, we
Many risk-sensitive applications require Machine Learning (ML) models to be interpretable. Attempts to obtain interpretable models typically rely on tuning, by trial-and-error, hyper-parameters of model complexity that are only loosely related to int
Recent successes of Deep Neural Networks (DNNs) in a variety of research tasks, however, heavily rely on the large amounts of labeled samples. This may require considerable annotation cost in real-world applications. Fortunately, active learning is a
How to understand deep learning systems remains an open problem. In this paper we propose that the answer may lie in the geometrization of deep networks. Geometrization is a bridge to connect physics, geometry, deep network and quantum computation an
In an ever expanding set of research and application areas, deep neural networks (DNNs) set the bar for algorithm performance. However, depending upon additional constraints such as processing power and execution time limits, or requirements such as