ترغب بنشر مسار تعليمي؟ اضغط هنا

Search and localization dynamics of the CRISPR/Cas9 system

78   0   0.0 ( 0 )
 نشر من قبل Simone Pigolotti
 تاريخ النشر 2021
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The CRISPR/Cas9 system acts as the prokariotic immune system and has important applications in gene editing. The protein Cas9 is a crucial component of this system. The role of Cas9 is to search for specific target sequences on the DNA and cleave them. In this Letter, we show that a model of facilitated diffusion fits data from single-molecule experiments and predicts that Cas9 search for targets by sliding, but with a short sliding length. We then investigate how Cas9 explores a long DNA containing randomly placed targets. We solve this problem by mapping it into the theory of Anderson localization in condensed matter physics. Our theoretical approach rationalizes experimental evidences on the distribution of Cas9 molecules along the DNA.



قيم البحث

اقرأ أيضاً

AMP activated protein kinase (AMPK) is a critical energy sensor, regulating signaling networks involved in pathology including metabolic diseases and cancer. This increasingly recognized role of AMPK has prompted tremendous research efforts to develo p new pharmacological AMPK activators. To precisely study the role of AMPK, and the specificity and activity of AMPK activators in cellular models, genetic AMPK inactivating tools are required. We report here methods for genetic inactivation of AMPK $alpha1/ alpha2$ catalytic subunits in human cell lines by the CRISPR/Cas9 technology, a recent breakthrough technique for genome editing.
Several independent observations have suggested that catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent {it in vitro} observations by Gardner et al.[ M. K. Gardner et al., Cell {bf147}, 1092 (2011)] sho wed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here, we investigate, via numerical simulations and mathematical calculations, some of the consequences of age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically and purely linear growth. The boundary demarcating the steady state and non-steady state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to non-exponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.
Efficient protein synthesis depends on the availability of charged tRNA molecules. With 61 different codons, shifting the balance among the tRNA abundances can lead to large changes in the protein synthesis rate. Previous theoretical work has asked a bout the optimization of these abundances, and there is some evidence that regulatory mechanisms bring cells close to this optimum, on average. We formulate the tradeoff between the precision of control and the efficiency of synthesis, asking for the maximum entropy distribution of tRNA abundances consistent with a desired mean rate of protein synthesis. Our analysis, using data from E. coli, indicates that reasonable synthesis rates are consistent only with rather low entropies, so that the cells regulatory mechanisms must encode a large amount of information about the correct tRNA abundances.
Trajectories of endosomes inside living eukaryotic cells are highly heterogeneous in space and time and diffuse anomalously due to a combination of viscoelasticity, caging, aggregation and active transport. Some of the trajectories display switching between persistent and anti-persistent motion while others jiggle around in one position for the whole measurement time. By splitting the ensemble of endosome trajectories into slow moving sub-diffusive and fast moving super-diffusive endosomes, we analyzed them separately. The mean squared displacements and velocity auto-correlation functions confirm the effectiveness of the splitting methods. Applying the local analysis, we show that both ensembles are characterized by a spectrum of local anomalous exponents and local generalized diffusion coefficients. Slow and fast endsomes have exponential distributions of local anomalous exponents and power law distributions of generalized diffusion coefficients. This suggests that heterogeneous fractional Brownian motion is an appropriate model for both fast and slow moving endosomes. This article is part of a Special Issue entitled: Recent Advances In Single-Particle Tracking: Experiment and Analysis edited by Janusz Szwabinski and Aleksander Weron.
Long cell protrusions, which are effectively one-dimensional, are highly dynamic subcellular structures. Length of many such protrusions keep fluctuating about the mean value even in the the steady state. We develop here a stochastic model motivated by length fluctuations of a type of appendage of an eukaryotic cell called flagellum (also called cilium). Exploiting the techniques developed for the calculation of level-crossing statistics of random excursions of stochastic process, we have derived analytical expressions of passage times for hitting various thresholds, sojourn times of random excursions beyond the threshold and the extreme lengths attained during the lifetime of these model flagella. We identify different parameter regimes of this model flagellum that mimic those of the wildtype and mutants of a well known flagellated cell. By analysing our model in these different parameter regimes, we demonstrate how mutation can alter the level-crossing statistics even when the steady state length remains unaffected by the same mutation. Comparison of the theoretically predicted level crossing statistics, in addition to mean and variance of the length, in the steady state with the corresponding experimental data can be used in near future as stringent tests for the validity of the models of flagellar length control. The experimental data required for this purpose, though never reported till now, can be collected, in principle, using a method developed very recently for flagellar length fluctuations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا