ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio frequency spectrum analyzer with a 5 THz bandwidth based on nonlinear optics in a CMOS compatible high-index doped silica waveguide

67   0   0.0 ( 0 )
 نشر من قبل David Moss
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report an all-optical radio-frequency (RF) spectrum analyzer with a bandwidth greater than 5 terahertz (THz), based on a 50-cm long spiral waveguide in a CMOS-compatible high-index doped silica platform. By carefully mapping out the dispersion profile of the waveguides for different thicknesses, we identify the optimal design to achieve near zero dispersion in the C-band. To demonstrate the capability of the RF spectrum analyzer, we measure the optical output of a femtosecond fiber laser with an ultrafast optical RF spectrum in the terahertz regime.



قيم البحث

اقرأ أيضاً

97 - Z. He , B. Chen , Y. Hua 2020
Coherent light sources in silicon photonics are the long-sought holy grail because silicon-based materials have indirect bandgap. Traditional strategies for realizing such sources, e.g., heterogeneous photonic integration, strain engineering and nonl inear process, are technologically demanding. Here, we demonstrate a hybrid lasing device composing of perovskite nanocrystals and silicon nitride nanobeam cavity. We fabricate SiN photonic crystal naonobeam cavities on a solid substrate with significantly improved thermal and mechanical stabilities compared to conventional suspended ones. In addition, adding a PMMA-encapsulation layer on top of the SiN can significantly boost the Q-factor of the cavity mode. By dispersing perovskite nanocrystals as emitters in the PMMA layer, we obtained high-performance coherent emissions in terms of lasing threshold, linewidth and mode volumes. Our work offers a compelling way of creating solution-processed active integrated photonic devices based on the mature platform of silicon photonics for applications in optical information science and photonic quantum technology.
Recent advances in photonic integrated circuits (PICs) have enabled a new generation of programmable many-mode interferometers (PMMIs) realized by cascaded Mach Zehnder Interferometers (MZIs) capable of universal linear-optical transformations on N i nput-output optical modes. PMMIs serve critical functions in photonic quantum information processing, quantum-enhanced sensor networks, machine learning and other applications. However, PMMI implementations reported to date rely on thermo-optic phase shifters, which limit applications due to slow response times and high power consumption. Here, we introduce a large-scale PMMI platform, based on a 200 mm CMOS process, that uses aluminum nitride (AlN) piezo-optomechanical actuators coupled to silicon nitride (SiN) waveguides, enabling low-loss propagation with phase modulation at greater than 100 MHz in the visible to near-infrared wavelengths. Moreover, the vanishingly low holding-power consumption of the piezo-actuators enables these PICs to operate at cryogenic temperatures, paving the way for a fully integrated device architecture for a range of quantum applications.
Photonic integrated circuits (PICs) are a key component [1] for future telecommunication networks, where demands for greater bandwidth, network flexibility, low energy consumption and cost must all be met. The quest for all optical components has nat urally targeted materials with extremely large nonlinearity, including chalcogenide glasses (ChG) [2] and semiconductors, such as silicon [3] and AlGaAs [4]. Yet issues such as immature fabrication technologies for ChG, and high linear and nonlinear losses for semiconductors, motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica based glass waveguides using continuous wave (CW) light. We demonstrate four wave mixing (FWM), with low (7mW) CW pump power at a wavelength of 1550nm, in high index doped silica glass ring resonators capable of performing in photonic telecommunications networks as linear filters [5]. The high reliability, design flexibility, and manufacturability of our device raises the possibility of a new platform for future low cost nonlinear all optical PICs.
We experimentally demonstrate broadband waveguide crossing arrays showing ultra low loss down to $0.04,$dB/crossing ($0.9%$), matching theory, and crosstalk suppression over $35,$dB, in a CMOS-compatible geometry. The principle of operation is the ta ilored excitation of a low-loss spatial Bloch wave formed by matching the periodicity of the crossing array to the difference in propagation constants of the 1$^text{st}$- and 3$^text{rd}$-order TE-like modes of a multimode silicon waveguide. Radiative scattering at the crossing points acts like a periodic imaginary-permittivity perturbation that couples two supermodes, which results in imaginary (radiative) propagation-constant splitting and gives rise to a low-loss, unidirectional breathing Bloch wave. This type of crossing array provides a robust implementation of a key component enabling dense photonic integration.
Lithium niobate on insulator (LNOI), as an emerging and promising optical integration platform, faces shortages of on-chip active devices including lasers and amplifiers. Here, we report the fabrication on-chip erbium-doped LNOI waveguide amplifiers based on electron beam lithography and inductively coupled plasma reactive ion etching. A net internal gain of ~30 dB/cm in communication band was achieved in the fabricated waveguide amplifiers under the pump of a 974-nm continuous laser. This work develops new active devices on LNOI and will promote the development of LNOI integrated photonics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا