ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear circular dichroism in Mie-resonant nanoparticle dimers

104   0   0.0 ( 0 )
 نشر من قبل Kristina Frizyuk
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study nonlinear response of a dimer composed of two identical Mie-resonant dielectric nanoparticles illuminated normally by a circularly polarized light. We develop a general theory describing hybridization of multipolar modes of the coupled nanoparticles, and reveal nonvanishing nonlinear circular dichroism (CD) in the second-harmonic generation (SHG) signal enhanced by the multipolar resonances in the dimer provided its axis is oriented under an angle to the crystalline lattice of the dielectric material. We present experimental results for this SHG-CD effect obtained for the AlGaAs dimers placed on an engineered substrate which confirm the basic prediction of our general multipolar hybridization theory.



قيم البحث

اقرأ أيضاً

Exciting optical effects such as polarization control, imaging, and holography were demonstrated at the nanoscale using the complex and irregular structures of nanoparticles with the multipole Mie-resonances in the optical range. The optical response of such particles can be simulated either by full wave numerical simulations or by the widely used analytical coupled multipole method (CMM), however, an analytical solution in the framework of CMM can be obtained only in a limited number of cases. In this paper, a modification of the CMM in the framework of the Born series and its applicability for simulation of light scattering by finite nanosphere structures, maintaining both dipole and quadrupole resonances, are investigated. The Born approximation simplifies an analytical consideration of various systems and helps shed light on physical processes ongoing in that systems. Using Mie theory and Greens functions approach, we analytically formulate the rigorous coupled dipole-quadrupole equations and their solution in the different-order Born approximations. We analyze in detail the resonant scattering by dielectric nanosphere structures such as dimer and ring to obtain the convergence conditions of the Born series and investigate how the physical characteristics such as absorption in particles, type of multipole resonance, and geometry of ensemble influence the convergence of Born series and its accuracy.
Circular dichroism (CD), induced by chirality, is an important tool for manipulating light or for characterizing morphology of molecules, proteins, crystals and nano-structures. CD is manifested over a wide size-range, from molecules to crystals or l arge nanostructures. Being a weak phenomenon (small fraction of absorption), CD is routinely measured on macroscopic amount of matter in solution, crystals, or arrays of fabricated meta-particles. These measurements mask the sensitivity of CD to small structural variation in nano-objects. Recently, several groups reported on chiroptical effects in individual nanoscale objects: Some, using near-field microscopy, where the tip-object interaction requires consideration. Some, using dark field scattering on large objects, and others by monitoring the fluorescence of individual chiral molecules. Here, we report on the direct observation of CD in individual nano-objects by far field extinction microscopy. CD measurements of both chiral shaped nanostructures (Gammadions) and nanocrystals (HgS) with chiral lattice structure are reported.
It is shown theoretically that a nonchiral, two-dimensional array of metallic spheres exhibits optical activity as manifested in calculations of circular dichroism. The metallic spheres occupy the sites of a rectangular lattice and for off-normal inc idence they show a strong circular-dichroism effect around the surface plasmon frequencies. The optical activity is a result of the rectangular symmetry of the lattice which gives rise to different polarizations modes of the crystal along the two orthogonal primitive lattice vectors. These two polarization modes result in a net polar vector, which forms a chiral triad with the wavevector and the vector normal to the plane of spheres. The formation of this chiral triad is responsible for the observed circular dichroism, although the structure itself is intrinsically nonchiral.
The optical properties of some nanomaterials can be controlled by an external magnetic field, providing active functionalities for a wide range of applications, from single-molecule sensing to nanoscale nonreciprocal optical isolation. Materials with broadband tunable magneto-optical response are therefore highly desired for various components in next-generation integrated photonic nanodevices. Concurrently, hyperbolic metamaterials received a lot of attention in the past decade since they exhibit unusual properties that are rarely observed in nature and provide an ideal platform to control the optical response at the nanoscale via careful design of the effective permittivity tensor, surpassing the possibilities of conventional systems. Here, we experimentally study magnetic circular dichroism in a metasurface made of type-II hyperbolic nanoparticles on a transparent substrate. Numerical simulations confirm the experimental findings, and an analytical model is established to explain the physical origin of the observed magneto-optical effects, which can be described in terms of the coupling of fundamental electric and magnetic dipole modes with an external magnetic field. Our system paves the way for the development of nanophotonic active devices combining the benefits of sub-wavelength light manipulation in hyperbolic metamaterials supporting a large density of optical states with the ability to freely tune the magneto-optical response via control over the anisotropic permittivity of the system.
Future technologies underpinning high-performance optical communications, ultrafast computations and compact biosensing will rely on densely packed reconfigurable optical circuitry based on nanophotonics. For many years, plasmonics was considered as the only available platform for nanoscale optics, but the recently emerged novel field of Mie resonant metaphotonics provides more practical alternatives for nanoscale optics by employing resonances in high-index dielectric nanoparticles and structures. In this mini-review we highlight some recent trends in the physics of dielectric Mie-resonant nanostructures with high quality factor (Q factor) for efficient spatial and temporal control of light by employing multipolar resonances and the bound states in the continuum. We discuss a few applications of these concepts to nonlinear optics, nanolasers, subwavelength waveguiding, and sensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا