ﻻ يوجد ملخص باللغة العربية
It is shown that a singular equivalence induced by tensoring with a suitable complex of bimodules defines a singular equivalence of Morita type with level, in the sense of Wang. This result is applied to homological ideals and idempotents to produce new reduction techniques for testing the properties of syzygy-finite and injectives generation of finite dimensional algebras over a field.
Auslander-Reiten conjecture, which says that an Artin algebra does not have any non-projective generator with vanishing self-extensions in all positive degrees, is shown to be invariant under certain singular equivalences induced by adjoint pairs, wh
Let $Lambda$ be a finite-dimensional algebra over a fixed algebraically closed field $mathbf{k}$ of arbitrary characteristic, and let $V$ be a finitely generated $Lambda$-module. It follows from results previously obtained by F.M. Bleher and the thir
Let $mathbf{k}$ be a field of arbitrary characteristic, let $Lambda$ be a Gorenstein $mathbf{k}$-algebra, and let $V$ be an indecomposable finitely generated non-projective Gorenstein-projective left $Lambda$-module whose stable endomorphism ring is
We apply the Auslander-Buchweitz approximation theory to show that the Iyama and Yoshinos subfactor triangulated category can be realized as a triangulated quotient. Applications of this realization go in three directions. Firstly, we recover both a
It is well-known that derived equivalences preserve tensor products and trivial extensions. We disprove both constructions for stable equivalences of Morita type.