ﻻ يوجد ملخص باللغة العربية
Explainability for machine learning models has gained considerable attention within our research community given the importance of deploying more reliable machine-learning systems. In computer vision applications, generative counterfactual methods indicate how to perturb a models input to change its prediction, providing details about the models decision-making. Current counterfactual methods make ambiguous interpretations as they combine multiple biases of the model and the data in a single counterfactual interpretation of the models decision. Moreover, these methods tend to generate trivial counterfactuals about the models decision, as they often suggest to exaggerate or remove the presence of the attribute being classified. For the machine learning practitioner, these types of counterfactuals offer little value, since they provide no new information about undesired model or data biases. In this work, we propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss to uncover multiple valuable explanations about the models prediction. Further, we introduce a mechanism to prevent the model from producing trivial explanations. Experiments on CelebA and Synbols demonstrate that our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods. We will publish the code.
In this work, we develop a technique to produce counterfactual visual explanations. Given a query image $I$ for which a vision system predicts class $c$, a counterfactual visual explanation identifies how $I$ could change such that the system would o
Counterfactual explanations are emerging as an attractive option for providing recourse to individuals adversely impacted by algorithmic decisions. As they are deployed in critical applications (e.g. law enforcement, financial lending), it becomes im
We present a new method for counterfactual explanations (CFEs) based on Bayesian optimisation that applies to both classification and regression models. Our method is a globally convergent search algorithm with support for arbitrary regression models
Machine learning is increasingly applied in high-stakes decision making that directly affect peoples lives, and this leads to an increased demand for systems to explain their decisions. Explanations often take the form of counterfactuals, which consi
Massive deployment of Graph Neural Networks (GNNs) in high-stake applications generates a strong demand for explanations that are robust to noise and align well with human intuition. Most existing methods generate explanations by identifying a subgra