ﻻ يوجد ملخص باللغة العربية
It is generally taken for granted that our Universe is free of antimatter objects and domains. This certitude has recently been challenged by the possible detection of anti-helium nuclei by AMS-02. Should the observation be confirmed, the existence of nearby antistars would make a plausible hypothesis to explain the origin of the antinuclei. In this paper we use the 10-years Fermi Large Area Telescope (LAT) gamma-ray source catalog to set constraints on the abundance of antistars around the Sun. We identify in the catalog 14 antistar candidates not associated with any objects belonging to established gamma-ray source classes and with a spectrum compatible with baryon-antibaryon annihilation. We use them along with an estimate of the LAT sensitivity to antistars to set upper limits on the local antistar fraction $f_{bar{ast}}$ with respect to normal stars. We provide parametric limits as a function of the closest antistar mass, velocity, and surrounding matter density. We also employ a novel Monte~Carlo method to set limits for a few hypotheses about the antistar population. For a population with properties equivalent to those of regular stars concentrated in the Galactic disk we obtain $f_{bar{ast}} < 2.5 times 10^{-6}$ at 95% confidence level, which is 20 times more constraining than limits previously available. For a primordial population of antistars distributed in the Galactic halo we obtain new local upper limits which decrease as a function of antistar mass $M$ from $f_{bar{ast}} < 0.2$ at 95% confidence level for $M = 1 ; M_odot$ to $f_{bar{ast}} < 1.6 times 10^{-4}$ at 95% confidence level for $M = 10 ; M_odot$. By combining these limits with existing microlensing constraints for lighter objects in the Magellanic clouds, we infer that a primordial population of halo antistars must have a density lower than $mathcal{O}(10^{-5};text{pc}^{-3})$ to $mathcal{O}(10^{-2};text{pc}^{-3})$ depending on their masses. Our limits can constrain models for the origin and propagation of antinuclei in cosmic rays.
We present the fourth Fermi Large Area Telescope catalog (4FGL) of gamma-ray sources. Based on the first eight years of science data from the Fermi Gamma-ray Space Telescope mission in the energy range from 50 MeV to 1 TeV, it is the deepest yet in t
The Extragalactic Background Light (EBL) includes photons with wavelengths from ultraviolet to infrared, which are effective at attenuating gamma rays with energy above ~10 GeV during propagation from sources at cosmological distances. This results i
We present the systematic spectral analyses of gamma-ray bursts (GRBs) detected by the Fermi Gamma-Ray Burst Monitor (GBM) during its first ten years of operation. This catalog contains two types of spectra; time-integrated spectral fits and spectral
We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a fo
We present an incremental version (4FGL-DR2, for Data Release 2) of the fourth Fermi-LAT catalog of gamma-ray sources. Based on the first ten years of science data in the energy range from 50 MeV to 1 TeV, it uses the same analysis methods as the 4FG