ترغب بنشر مسار تعليمي؟ اضغط هنا

A comparative study of type-II, inverse and linear seesaw mechanisms with $ A_{4} $ flavour symmetry

69   0   0.0 ( 0 )
 نشر من قبل Maibam Ricky Devi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we present a comparative study of the three of the seesaw models, viz., type II, inverse and linear seesaw models, to investigate about light neutrino masses and mixings, flavour structure, neutrinoless double beta decay ($ 0 u beta beta $) and charged lepton flavour violation (cLFV) decay ($murightarrow egamma$). We consider the $ A_{4} $ flavour symmetry, while some other symmetries, like $U(1)_{X}$, $Z_4$ and $Z_5$ are also included to forbid unwanted terms in the Lagrangian. Taking into account the present experimental data for the known light neutrino parameters from recent global fit data, we compute the currently unknown neutrino parameters such as the lightest neutrino mass ($m_1$), CPV phase (Dirac and Majorana), and effective light neutrino mass in the neutrinoless double beta decay, by considering different VEV alignments of the triplet scalar flavon fields. We also elucidate on the octant of atmospheric neutrino mixing angle, $theta_{23}$, in the light of our predicted results. Finally, we present the region of parameter spaces of $m_1$, CPV phases, octant of $theta_{23}$ and effective mass measurable in of neutrino less double beta decay experiments, that can be tested in future experiments. We observe that the branching ratio of ($murightarrow egamma$) can help discriminate the three seesaw models. Further, the favoured Octant of the atmospheric mixing angle $theta_{23}$ changes with the VEV alignment of the triplet flavon field - i.e., the internal flavour structure of the neutrinos is reflected in their composition (mixing). The constant F determining the scale of flavour symmetry breaking, seesaw scale and coupling constants of the three seesaw models has also been computed, which puts a constraint among them allowed by the present experimental results.



قيم البحث

اقرأ أيضاً

Motivated by the recent resurrection of the evidence for an eV scale sterile neutrino from the MiniBooNE experiment, we revisit one of the most minimal seesaw model known as the minimal extended seesaw that gives rise to a $3+1$ light neutrino mass m atrix. We consider the presence of $A_4$ flavour symmetry which plays a non-trivial role in generating the structure of the neutrino mass matrix. Considering a diagonal charged lepton mass matrix and generic vacuum alignments of $A_4$ triplet flavons, we classify the resulting mass matrices based on their textures. Keeping aside the disallowed texture zeros based on earlier studies of $3+1$ neutrino textures, we categorise the remaining ones based on texture zeros, $mu-tau$ symmetry in the $3times3$ block and hybrid textures. After pointing out the origin of such $3+1$ neutrino textures to $A_4$ vacuum alignments, we use the latest $3+1$ neutrino oscillation data and numerically analyse the texture zeros and $mu-tau$ symmetric cases. We find that a few of them are allowed from each category predicting interesting correlations between neutrino parameters. We also find that all of these allowed cases prefer normal hierarchical pattern of light neutrino masses over inverted hierarchy.
We propose a hybrid seesaw model based on $A_{4}$ flavor symmetry, which generates a large hierarchical flavor structure. In our model, tree-level and one-loop seesaw mechanisms predict different flavor structures in the neutrino mass matrix, and gen erate a notable hierarchy among them. We find that such a hierarchical structure gives a large effective neutrino mass which can be accessible by next-generation neutrinoless double beta decay experiments. Majorana phases can also be predictable. The $A_{4}$ flavor symmetry in the model is spontaneously broken to the $Z_{2}$ symmetry, leading to a dark matter candidate which is assumed to be a neutral scalar field. The favored mass region of the dark matter is obtained by numerical computations of the relic abundance and the cross section of the nucleon. We also investigate the predictions of the several hierarchical flavor structures based on $A_{4}$ symmetry for the effective neutrino mass and the Majorana phases, and find the characteristic features depending on the hierarchical structures.
We discuss type-II seesaw models adopting modular $A_4$ symmetry in supersymmetric framework. In our approach, the models are classified by the assignment of $A_4$ representations and modular weights for leptons and triplet Higgs fields. Then neutrin o mass matrix is characterized by modulus $tau$ and two free parameters. Carrying out numerical analysis, we find allowed parameter sets which can fit the neutrino oscillation data. For the allowed parameter sets, we obtain the predictions in neutrino sector such as CP violating phases and the lightest neutrino mass. Finally we also show the predictions for the branching ratios of doubly charged scalar boson focusing on the case where the doubly charged scalar boson dominantly decays into charged leptons.
We propose a Standard Model extension with underlying A4 flavour symmetry where small Dirac neutrino masses arise from a Type-II seesaw mechanism. The model predicts the golden flavour-dependent bottom-tau mass relation, requires an inverted neutrino mass ordering and non-maximal atmospheric mixing angle. Using the latest neutrino oscillation global fit we derive restrictions on the oscillation parameters, such as a correlation between Dirac CP phase and the lightest neutrino mass.
In this paper, we combine the $ u$-Two-Higgs-Doublet-Model ($ u$THDM) with the inverse seesaw mechanisms. In this model, the Yukawa couplings involving the sterile neutrinos and the exotic Higgs bosons can be of order one in the case of a large $tan beta$. We calculated the corrections to the Z-resonance parameters $R_{l_i}$, $A_{l_i}$, $N_{ u}$, together with the $l_1 rightarrow l_2 gamma$ branching ratios, and the muon anomalous $g-2$. Compared with the current bounds and plans for the future colliders, we find that the corrections to the electroweak parameters can be contrained or discovered in much of the parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا