ﻻ يوجد ملخص باللغة العربية
3D point-cloud-based perception is a challenging but crucial computer vision task. A point-cloud consists of a sparse, unstructured, and unordered set of points. To understand a point-cloud, previous point-based methods, such as PointNet++, extract visual features through hierarchically aggregation of local features. However, such methods have several critical limitations: 1) Such methods require several sampling and grouping operations, which slow down the inference speed. 2) Such methods spend an equal amount of computation on each points in a point-cloud, though many of points are redundant. 3) Such methods aggregate local features together through downsampling, which leads to information loss and hurts the perception performance. To overcome these challenges, we propose a novel, simple, and elegant deep learning model called YOGO (You Only Group Once). Compared with previous methods, YOGO only needs to sample and group a point-cloud once, so it is very efficient. Instead of operating on points, YOGO operates on a small number of tokens, each of which summarizes the point features in a sub-region. This allows us to avoid computing on the redundant points and thus boosts efficiency.Moreover, YOGO preserves point-wise features by projecting token features to point features although the computation is performed on tokens. This avoids information loss and can improve point-wise perception performance. We conduct thorough experiments to demonstrate that YOGO achieves at least 3.0x speedup over point-based baselines while delivering competitive classification and segmentation performance on the ModelNet, ShapeNetParts and S3DIS datasets.
In this paper, we propose a novel local descriptor-based framework, called You Only Hypothesize Once (YOHO), for the registration of two unaligned point clouds. In contrast to most existing local descriptors which rely on a fragile local reference fr
Point cloud processing is very challenging, as the diverse shapes formed by irregular points are often indistinguishable. A thorough grasp of the elusive shape requires sufficiently contextual semantic information, yet few works devote to this. Here
A panoptic driving perception system is an essential part of autonomous driving. A high-precision and real-time perception system can assist the vehicle in making the reasonable decision while driving. We present a panoptic driving perception network
Visual Grounding (VG) aims to locate the most relevant region in an image, based on a flexible natural language query but not a pre-defined label, thus it can be a more useful technique than object detection in practice. Most state-of-the-art methods
The recent advancements of three-dimensional (3D) data acquisition devices have spurred a new breed of applications that rely on point cloud data processing. However, processing a large volume of point cloud data brings a significant workload on reso