ﻻ يوجد ملخص باللغة العربية
Adversarially trained models exhibit a large generalization gap: they can interpolate the training set even for large perturbation radii, but at the cost of large test error on clean samples. To investigate this gap, we decompose the test risk into its bias and variance components and study their behavior as a function of adversarial training perturbation radii ($varepsilon$). We find that the bias increases monotonically with $varepsilon$ and is the dominant term in the risk. Meanwhile, the variance is unimodal as a function of $varepsilon$, peaking near the interpolation threshold for the training set. This characteristic behavior occurs robustly across different datasets and also for other robust training procedures such as randomized smoothing. It thus provides a test for proposed explanations of the generalization gap. We find that some existing explanations fail this test--for instance, by predicting a monotonically increasing variance curve. This underscores the power of bias-variance decompositions in modern settings-by providing two measurements instead of one, they can rule out more explanations than test accuracy alone. We also show that bias and variance can provide useful guidance for scalably reducing the generalization gap, highlighting pre-training and unlabeled data as promising routes.
While adversarial training can improve robust accuracy (against an adversary), it sometimes hurts standard accuracy (when there is no adversary). Previous work has studied this tradeoff between standard and robust accuracy, but only in the setting wh
The classical bias-variance trade-off predicts that bias decreases and variance increase with model complexity, leading to a U-shaped risk curve. Recent work calls this into question for neural networks and other over-parameterized models, for which
Recently, learning a model that generalizes well on out-of-distribution (OOD) data has attracted great attention in the machine learning community. In this paper, after defining OOD generalization via Wasserstein distance, we theoretically show that
Adversarial training is an approach for increasing models resilience against adversarial perturbations. Such approaches have been demonstrated to result in models with feature representations that generalize better. However, limited works have been d
Deep neural networks (DNNs) have set benchmarks on a wide array of supervised learning tasks. Trained DNNs, however, often lack robustness to minor adversarial perturbations to the input, which undermines their true practicality. Recent works have in