ﻻ يوجد ملخص باللغة العربية
We study the mass spectra of the $NOmega$ dibaryons in the $^{3}S_1$ and $^{5}S_2$ channels with $J^{P}=1^{+}$ and $2^{+}$ respectively, by using the method of QCD sum rules. We construct two dibaryon interpolating currents in the molecular picture and calculate their correlation functions and spectral densities up to dimension-16 condensates. Our results indicate that there may exist an $NOmega$ dibaryon bound state in the $^{5}S_2$ channel with a binding energy of about $21 mathrm{MeV}$. The masses of the $^{3}S_1$ $NOmega$ dibaryons with $J^{P}=1^{+}$ are predicted to be higher than the $NOmega$ and $LambdaXi$ thresholds, and thus can decay into these final states directly in S-wave. The $NOmega (^{5}S_2)$ dibaryon bound state can decay into the octet-octet final states $LambdaXi$ and $SigmaXi$ in D-wave via the quark rearrangement mechanism. The existence of these $NOmega$ dibaryons may be identified in the relativistic heavy-ion collision experiments in the future.
We present the detection of the highly forbidden $2^{3!}S_1 rightarrow 3^{3!}S_1$ atomic transition in helium, the weakest transition observed in any neutral atom. Our measurements of the transition frequency, upper state lifetime, and transition str
The most recent experimental data for all measured production and decay channels of the bottomonium-like states $Z_b(10610)$ and $Z_b(10650)$ are analysed simultaneously using solutions of the Lippmann-Schwinger equations which respect constraints fr
The nucleon($N$)-Omega($Omega$) system in the S-wave and spin-2 channel ($^5$S$_2$) is studied from the (2+1)-flavor lattice QCD with nearly physical quark masses ($m_pi simeq 146$~MeV and $m_K simeq 525$~MeV). The time-dependent HAL QCD method is em
In this article, the mass spectra of mesons with one or two heavy quarks and their diquarks partners are estimated within a non-relativistic framework by solving Schrodinger equation with an effective potential inspired by a symmetry preserving Poinc
Within the three-flavor PNJL and EPNJL chiral quark models we have obtained pseudoscalar meson properties in quark matter at finite temperature $T$ and baryochemical potential $mu_B$. We compare the meson pole (Breit-Wigner) approximation with the Be