ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular spin qudits for quantum simulation of light-matter interactions

139   0   0.0 ( 0 )
 نشر من قبل Francesco Tacchino
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter. The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses. The spin $S$ ion is exploited to encode the photon field in a flexible architecture, which enables the digital simulation of a wide range of spin-boson models much more efficiently than by using a multi-qubit register. The effectiveness of our proposal is demonstrated by numerical simulations using realistic molecular parameters, whose prerequisites delineating possible chemical approaches are also discussed.



قيم البحث

اقرأ أيضاً

Presently, one of the most ambitious technological goals is the development of devices working under the laws of quantum mechanics. One prominent target is the quantum computer, which would allow the processing of information at quantum level for pur poses not achievable with even the most powerful computer resources. The large-scale implementation of quantum information would be a game changer for current technology, because it would allow unprecedented parallelised computation and secure encryption based on the principles of quantum superposition and entanglement. Currently, there are several physical platforms racing to achieve the level of performance required for the quantum hardware to step into the realm of practical quantum information applications. Several materials have been proposed to fulfil this task, ranging from quantum dots, Bose-Einstein condensates, spin impurities, superconducting circuits, molecules, amongst others. Magnetic molecules are among the list of promising building blocks, due to (i) their intrinsic monodispersity, (ii) discrete energy levels (iii) the possibility of chemical quantum state engineering, and (iv) their multilevel characteristics, leading to the so called Qudits (d > 2), amongst others. Herein we review how a molecular multilevel nuclear spin qubit (or qudit, where d = 4), known as TbPc2, gathers all the necessary requirements to perform as a molecular hardware platform with a first generation of molecular devices enabling even quantum algorithm operations.
We analyze the coupling of atoms or atom-like emitters to nanophotonic waveguides in the presence of propagating acoustic waves. Specifically, we show that strong index modulations induced by such waves can drastically modify the effective photonic d ensity of states and thereby influence the strength, the directionality, as well as the overall characteristics of photon emission and absorption processes. These effects enable a complete dynamical control of light-matter interactions in waveguide structures, which even in a two dimensional system can be used to efficiently exchange individual photons along selected directions and with a very high fidelity. Such a quantum acousto-optical control provides a versatile tool for various quantum networking applications ranging from the distribution of entanglement via directional emitter-emitter interactions to the routing of individual photonic quantum states via acoustic conveyor belts.
158 - Julen S. Pedernales 2016
This thesis offers novel strategies for the measurement of quantum correlations present in controllable quantum systems, as well as for a full-fledged implementation of the models of light-matter interaction through which these correlations can be ge nerated. We propose the use of an ancillary qubit to efficiently access both time-correlation functions and entanglement monotones, and we provide two experimental demonstrations of our methods, measuring time correlations in an NMR setup and entanglement monotones in a photonic system. Moreover, we explain how time-correlation functions could be exploited for the quantum simulation of open quantum dynamics, and we provide an experimental recipe for the measurement of entanglement monotones in trapped ion technologies. On the other hand, we explore the quantum simulation of quantum optical models of light-matter interaction for inaccessible coupling regimes, providing experimental proposals for their implementation, both in ions and superconducting circuits. Finally, we also provide an experimental proposal for the quantum simulation of spin models in trapped ions following a digital-analog simulation scheme.
Quantum cooperativity is evident in light-matter platforms where quantum emitter ensembles are interfaced with confined optical modes and are coupled via the ubiquitous electromagnetic quantum vacuum. Cooperative effects can find applications, among other areas, in topological quantum optics, in quantum metrology or in quantum information. This tutorial provides a set of theoretical tools to tackle the behavior responsible for the onset of cooperativity by extending open quantum system dynamics methods, such as the master equation and quantum Langevin equations, to electron-photon interactions in strongly coupled and correlated quantum emitter ensembles. The methods are illustrated on a wide range of current research topics such as the design of nanoscale coherent light sources, highly-reflective quantum metasurfaces or low intracavity power superradiant lasers. The analytical approaches are developed for ensembles of identical two-level quantum emitters and then extended to more complex systems where frequency disorder or vibronic couplings are taken into account. The relevance of the approach ranges from atoms in optical lattices to quantum dots or molecular systems in solid-state environments.
Cavity-QED systems have recently reached a regime where the light-matter interaction strength amounts to a non-negligible fraction of the resonance frequencies of the bare subsystems. In this regime, it is known that the usual normal-order correlatio n functions for the cavity-photon operators fail to describe both the rate and the statistics of emitted photons. Following Glaubers original approach, we derive a simple and general quantum theory of photodetection, valid for arbitrary light-matter interaction strengths. Our derivation uses Fermis golden rule, together with an expansion of system operators in the eigenbasis of the interacting light-matter system, to arrive at the correct photodetection probabilities. We consider both narrow- and wide-band photodetectors. Our description is also valid for point-like detectors placed inside the optical cavity. As an application, we propose a gedanken experiment confirming the virtual nature of the bare excitations that enrich the ground state of the quantum Rabi model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا