ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-frequency radio spectra of submillimetre galaxies in the Lockman Hole

370   0   0.0 ( 0 )
 نشر من قبل Joanna Ramasawmy
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the radio properties of a sample of 53 sources selected at 850 $mu$m from the SCUBA-2 Cosmology Legacy Survey using new deep, low-frequency radio imaging of the Lockman Hole field from the Low Frequency Array. Combining these data with additional radio observations from the GMRT and the JVLA, we find a variety of radio spectral shapes and luminosities within our sample despite their similarly bright submillimetre flux densities. We characterise their spectral shapes in terms of multi-band radio spectral indices. Finding strong spectral flattening at low frequencies in ~20% of sources, we investigate the differences between sources with extremely flat low-frequency spectra and those with `normal radio spectral indices. As there are no other statistically significant differences between the two subgroups of our sample as split by the radio spectral index, we suggest that any differences are undetectable in galaxy-averaged properties that we can observe with our unresolved images, and likely relate to galaxy properties that we cannot resolve, on scales $lesssim$ 1 kpc. We attribute the observed spectral flattening in the radio to free-free absorption, proposing that those sources with significant low-frequency spectral flattening have a clumpy distribution of star-forming gas. We estimate an average spatial extent of absorbing material of at most several hundred parsecs to produce the levels of absorption observed in the radio spectra. This estimate is consistent with the highest-resolution observations of submillimetre galaxies in the literature, which find examples of non-uniform dust distributions on scales of ~100 pc, with evidence for clumps and knots in the interstellar medium. Additionally, we find two bright (> 6 mJy) submm sources undetected at all other wavelengths. We speculate that these objects may be very high redshift sources, likely residing at z > 4.



قيم البحث

اقرأ أيضاً

Remnant radio galaxies represent an important phase in the life-cycle of radio active galactic nuclei. It is suggested that in this phase, the jets have switched off and the extended emission is fading rapidly. This phase is not well-studied due to t he lack of statistical samples observed at both low and high frequencies. In this work, we study a sample of 23 candidate remnant radio galaxies previously selected using the Low Frequency Array at 150 MHz in the Lockman Hole field. We examine their morphologies and study their spectral properties to confirm their remnant nature and revise the morphological and spectral criteria used to define the initial sample. We present new observations with the Karl G. Jansky Very Large Array at 6000 MHz at both high and low resolution. These observations allowed us to observe the presence or absence of cores and study the spectral curvature and steepness of the spectra of the total emission expected at these high frequencies for the remnant candidates. We confirm 13 out of 23 candidates as remnant radio sources. This corresponds to 7% of the full sample of active, restarted, and remnant candidates from the Lockman Hole field. Surprisingly, only a minority of remnants reside in a cluster (23%). The remnant radio galaxies show a range of properties and morphologies. The majority do not show detection of the core at 6000 MHz and their extended emission often shows ultra-steep spectra (USS). However, there are also remnants with USS total emission and a detection of the core at 6000 MHz, possibly indicating a variety of evolutionary stages in the remnant phase. We confirm the importance of the combination of morphological and spectral criteria and this needs to be taken into consideration when selecting a sample of remnant radio sources.
The Lockman Hole is a well-studied extragalactic field with extensive multi-band ancillary data covering a wide range in frequency, essential for characterising the physical and evolutionary properties of the various source populations detected in de ep radio fields (mainly star-forming galaxies and AGNs). In this paper we present new 150-MHz observations carried out with the LOw Frequency ARray (LOFAR), allowing us to explore a new spectral window for the faint radio source population. This 150-MHz image covers an area of 34.7 square degrees with a resolution of 18.6$times$14.7 arcsec and reaches an rms of 160 $mu$Jy beam$^{-1}$ at the centre of the field. As expected for a low-frequency selected sample, the vast majority of sources exhibit steep spectra, with a median spectral index of $alpha_{150}^{1400}=-0.78pm0.015$. The median spectral index becomes slightly flatter (increasing from $alpha_{150}^{1400}=-0.84$ to $alpha_{150}^{1400}=-0.75$) with decreasing flux density down to $S_{150} sim$10 mJy before flattening out and remaining constant below this flux level. For a bright subset of the 150-MHz selected sample we can trace the spectral properties down to lower frequencies using 60-MHz LOFAR observations, finding tentative evidence for sources to become flatter in spectrum between 60 and 150 MHz. Using the deep, multi-frequency data available in the Lockman Hole, we identify a sample of 100 Ultra-steep spectrum (USS) sources and 13 peaked spectrum sources. We estimate that up to 21 percent of these could have $z>4$ and are candidate high-$z$ radio galaxies, but further follow-up observations are required to confirm the physical nature of these objects.
Radio galaxies are known to go through cycles of activity, where phases of apparent quiescence can be followed by repeated activity of the central supermassive black hole. A better understanding of this cycle is crucial for ascertaining the energetic impact that the jets have on the host galaxy, but little is known about it. We used deep LOFAR images at 150 MHz of the Lockman Hole extragalactic field to select a sample of 158 radio sources with sizes $> 60^{primeprime}$ in different phases of their jet life cycle. Using a variety of criteria (e.g. core prominence combined with low-surface brightness of the extended emission and steep spectrum of the central region) we selected a subsample of candidate restarted radio galaxies representing between 13% and 15% of the 158 sources of the main sample. We compare their properties to the rest of the sample, which consists of remnant candidates and active radio galaxies. Optical identifications and characterisations of the host galaxies indicate similar properties for candidate restarted, remnant, and active radio galaxies, suggesting that they all come from the same parent population. The fraction of restarted radio galaxies is slightly higher with respect to remnants, suggesting that the restarted phase can often follow after a relatively short remnant phase (the duration of the remnant phase being a few times 10$^{7}$ years). This confirms that the remnant and restarted phases are integral parts of the life cycle of massive elliptical galaxies. A preliminary investigation does not suggest a strong dependence of this cycle on the environment surrounding any given galaxy.
The shape of low-frequency radio continuum spectra of normal galaxies is not well understood, the key question being the role of physical processes such as thermal absorption in shaping them. In this work we take advantage of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) to investigate such spectra for a large sample of nearby star-forming galaxies. Using the measured 150MHz flux densities from the LOFAR MSSS survey and literature flux densities at various frequencies we have obtained integrated radio spectra for 106 galaxies. The spectra are explained through the use of a three-dimensional model of galaxy radio emission, and radiation transfer dependent on the galaxy viewing angle and absorption processes. Spectra of our galaxies are generally flatter at lower compared to higher frequencies but as there is no tendency for the highly inclined galaxies to have more flattened low-frequency spectra, we argue that the observed flattening is not due to thermal absorption, contradicting the suggestion of Israel & Mahoney (1990). According to our modelled radio maps for M51-like galaxies, the free-free absorption effects can be seen only below 30MHz and in the global spectra just below 20MHz, while in the spectra of starburst galaxies, like M82, the flattening due to absorption is instead visible up to higher frequencies of about 150MHz. Locally, within galactic disks, the absorption effects are distinctly visible in M51-like galaxies as spectral flattening around 100-200MHz in the face-on objects, and as turnovers in the edge-on ones, while in M82-like galaxies there are strong turnovers at frequencies above 700MHz, regardless of viewing angle. Our modelling suggests that the weak spectral flattening observed in the nearby galaxies studied here results principally from synchrotron spectral curvature due to cosmic ray energy losses and propagation effects.
Using the Alternative Data Release of the TIFR GMRT Sky Survey (TGSS), we studied the low-frequency properties of FR0 radio galaxies, the large population of compact radio sources associated with red massive early-type galaxies revealed by surveys at 1.4 GHz. We considered TGSS observations from FR0CAT, a sample formed by 104 FR0s at z<0.05: all but one of them are covered by the TGSS, and 43 of them are detected above a 5 sigma limit of 17.5 mJy. No extended emission has been detected around the FR0s, corresponding to a luminosity limit of < 4 10^23 W/Hz over an area of 100 kpc x 100 kpc. All but eight FR0s have a flat or inverted spectral shape (alpha < 0.5) between 150 MHz and 1.4 GHz: this spectral behavior confirms the general paucity of optically thin extended emission within the TGSS beam, as is expected for their compact 1.4 GHz morphology. Data at 5 GHz were used to build their radio spectra, which are also generally flat at higher frequencies. By focusing on a sub-sample of FR0s with flux density > 50 mJy at 1.4 GHz, we found that ~75% of them have a convex spectrum, but with a smaller curvature than the more powerful gigahertz peaked-spectrum sources (GPS). The typical FR0s radio spectrum is better described by a gradual steepening toward high frequencies, rather than to a transition from an optically-thick to an optically-thin regime, possibly observed in only ~15% of the sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا