ﻻ يوجد ملخص باللغة العربية
We develop a special phase field/diffusive interface method to model the nuclear architecture reorganization process. In particular, we use a Lagrange multiplier approach in the phase field model to preserve the specific physical and geometrical constraints for the biological events. We develop several efficient and robust linear and weakly nonlinear schemes for this new model. To validate the model and numerical methods, we present ample numerical simulations which in particular reproduce several processes of nuclear architecture reorganization from the experiment literature.
We introduce a phase-field method for continuous modeling of cracks with frictional contacts. Compared with standard discrete methods for frictional contacts, the phase-field method has two attractive features: (1) it can represent arbitrary crack ge
We compare the accuracy, convergence rate and computational cost of eigenerosion (EE) and phase-field (PF) methods. For purposes of comparison, we specifically consider the standard test case of a center-crack panel loaded in biaxial tension and asse
Techniques from numerical bifurcation theory are very useful to study transitions between steady fluid flow patterns and the instabilities involved. Here, we provide computational methodology to use parameter continuation in determining probability d
In this paper, we present an efficient numerical algorithm for solving the time-dependent Cahn--Hilliard--Navier--Stokes equations that model the flow of two phases with different densities. The pressure-correction step in the projection method consi
Several aspects influence corrosive processes in RC structures, such as environmental conditions, structural geometry, and mechanical properties. Since these aspects present large randomnesses, probabilistic models allow a more accurate description o