ﻻ يوجد ملخص باللغة العربية
Modern computing facilities grant access to first-principles density-functional theory study of complex physical and chemical phenomena in materials, that require large supercell to properly model the system. However, supercells are associated to small Brillouin zones in the reciprocal space, leading to folded electronic eigenstates that make the analysis and interpretation extremely challenging. Various techniques have been proposed and developed in order to reconstruct the electronic band structures of super cells, unfolded into the reciprocal space of an ideal primitive cell. Here, we propose an efficient unfolding scheme embedded directly in the Vienna Ab-initio Simulation Package (VASP), that requires modest computational resources and allows for an automatized mapping from the reciprocal space of the supercell to primitive cell Brillouin zone. This algorithm can computes band structures, Fermi surfaces and spectral functions, by using an integrated post-processing tool (bands4vasp). The method is here applied to a selected variety of complex physical situations: the effect of doping on the band dispersion in the BaFe$_{rm 2(1-x)}$Ru$_{rm 2x}$As$_2$ superconductor, the interaction between adsorbates and polaronic states on the TiO$_2$(110) surface, and the band splitting induced by non-collinear spin fluctuations in EuCd$_2$As$_2$.
We present Quantum Unfolding, a Fortran90 program for unfolding first-principles electronic energy bands. It unfolds energy bands accurately by handling the Fourier components of Bloch wavefunctions, which are reconstructed from Wannier functions fro
We present an all-Heusler architecture which could be used as a rational design scheme for achieving high spin-filtering efficiency in the current-perpendicular-to-plane giant magnetoresistance (CPP-GMR) devices. A Co2MnSi/Ni2NiSi/Co2MnSi trilayer st
We propose a novel periodicity-free unfolding method of the electronic energy spectra. Our new method solves a serious problem that calculated electronic band structure strongly depends on the choice of the simulation cell, i.e., primitive-cell or su
We present an implementaion of interface between the full-potential linearized augmented plane wave package Wien2k and the wannier90 code for the construction of maximally localized Wannier functions. The FORTRAN code and a documentation is made avai
Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for