ترغب بنشر مسار تعليمي؟ اضغط هنا

Lyapunov Barrier Policy Optimization

109   0   0.0 ( 0 )
 نشر من قبل Harshit Sikchi
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deploying Reinforcement Learning (RL) agents in the real-world require that the agents satisfy safety constraints. Current RL agents explore the environment without considering these constraints, which can lead to damage to the hardware or even other agents in the environment. We propose a new method, LBPO, that uses a Lyapunov-based barrier function to restrict the policy update to a safe set for each training iteration. Our method also allows the user to control the conservativeness of the agent with respect to the constraints in the environment. LBPO significantly outperforms state-of-the-art baselines in terms of the number of constraint violations during training while being competitive in terms of performance. Further, our analysis reveals that baselines like CPO and SDDPG rely mostly on backtracking to ensure safety rather than safe projection, which provides insight into why previous methods might not have effectively limit the number of constraint violations.



قيم البحث

اقرأ أيضاً

We study continuous action reinforcement learning problems in which it is crucial that the agent interacts with the environment only through safe policies, i.e.,~policies that do not take the agent to undesirable situations. We formulate these proble ms as constrained Markov decision processes (CMDPs) and present safe policy optimization algorithms that are based on a Lyapunov approach to solve them. Our algorithms can use any standard policy gradient (PG) method, such as deep deterministic policy gradient (DDPG) or proximal policy optimization (PPO), to train a neural network policy, while guaranteeing near-constraint satisfaction for every policy update by projecting either the policy parameter or the action onto the set of feasible solutions induced by the state-dependent linearized Lyapunov constraints. Compared to the existing constrained PG algorithms, ours are more data efficient as they are able to utilize both on-policy and off-policy data. Moreover, our action-projection algorithm often leads to less conservative policy updates and allows for natural integration into an end-to-end PG training pipeline. We evaluate our algorithms and compare them with the state-of-the-art baselines on several simulated (MuJoCo) tasks, as well as a real-world indoor robot navigation problem, demonstrating their effectiveness in terms of balancing performance and constraint satisfaction. Videos of the experiments can be found in the following link: https://drive.google.com/file/d/1pzuzFqWIE710bE2U6DmS59AfRzqK2Kek/view?usp=sharing.
Model-free reinforcement learning (RL) methods are succeeding in a growing number of tasks, aided by recent advances in deep learning. However, they tend to suffer from high sample complexity, which hinders their use in real-world domains. Alternativ ely, model-based reinforcement learning promises to reduce sample complexity, but tends to require careful tuning and to date have succeeded mainly in restrictive domains where simple models are sufficient for learning. In this paper, we analyze the behavior of vanilla model-based reinforcement learning methods when deep neural networks are used to learn both the model and the policy, and show that the learned policy tends to exploit regions where insufficient data is available for the model to be learned, causing instability in training. To overcome this issue, we propose to use an ensemble of models to maintain the model uncertainty and regularize the learning process. We further show that the use of likelihood ratio derivatives yields much more stable learning than backpropagation through time. Altogether, our approach Model-Ensemble Trust-Region Policy Optimization (ME-TRPO) significantly reduces the sample complexity compared to model-free deep RL methods on challenging continuous control benchmark tasks.
Model-based algorithms, which learn a dynamics model from logged experience and perform some sort of pessimistic planning under the learned model, have emerged as a promising paradigm for offline reinforcement learning (offline RL). However, practica l variants of such model-based algorithms rely on explicit uncertainty quantification for incorporating pessimism. Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable. We overcome this limitation by developing a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-action tuples generated via rollouts under the learned model. This results in a conservative estimate of the value function for out-of-support state-action tuples, without requiring explicit uncertainty estimation. We theoretically show that our method optimizes a lower bound on the true policy value, that this bound is tighter than that of prior methods, and our approach satisfies a policy improvement guarantee in the offline setting. Through experiments, we find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods on widely studied offline RL benchmarks, including image-based tasks.
113 - Fei Ye , Xuxin Cheng , Pin Wang 2020
Lane-change maneuvers are commonly executed by drivers to follow a certain routing plan, overtake a slower vehicle, adapt to a merging lane ahead, etc. However, improper lane change behaviors can be a major cause of traffic flow disruptions and even crashes. While many rule-based methods have been proposed to solve lane change problems for autonomous driving, they tend to exhibit limited performance due to the uncertainty and complexity of the driving environment. Machine learning-based methods offer an alternative approach, as Deep reinforcement learning (DRL) has shown promising success in many application domains including robotic manipulation, navigation, and playing video games. However, applying DRL to autonomous driving still faces many practical challenges in terms of slow learning rates, sample inefficiency, and safety concerns. In this study, we propose an automated lane change strategy using proximal policy optimization-based deep reinforcement learning, which shows great advantages in learning efficiency while still maintaining stable performance. The trained agent is able to learn a smooth, safe, and efficient driving policy to make lane-change decisions (i.e. when and how) in a challenging situation such as dense traffic scenarios. The effectiveness of the proposed policy is validated by using metrics of task success rate and collision rate. The simulation results demonstrate the lane change maneuvers can be efficiently learned and executed in a safe, smooth, and efficient manner.
In this work, we consider the problem of model selection for deep reinforcement learning (RL) in real-world environments. Typically, the performance of deep RL algorithms is evaluated via on-policy interactions with the target environment. However, c omparing models in a real-world environment for the purposes of early stopping or hyperparameter tuning is costly and often practically infeasible. This leads us to examine off-policy policy evaluation (OPE) in such settings. We focus on OPE for value-based methods, which are of particular interest in deep RL, with applications like robotics, where off-policy algorithms based on Q-function estimation can often attain better sample complexity than direct policy optimization. Existing OPE metrics either rely on a model of the environment, or the use of importance sampling (IS) to correct for the data being off-policy. However, for high-dimensional observations, such as images, models of the environment can be difficult to fit and value-based methods can make IS hard to use or even ill-conditioned, especially when dealing with continuous action spaces. In this paper, we focus on the specific case of MDPs with continuous action spaces and sparse binary rewards, which is representative of many important real-world applications. We propose an alternative metric that relies on neither models nor IS, by framing OPE as a positive-unlabeled (PU) classification problem with the Q-function as the decision function. We experimentally show that this metric outperforms baselines on a number of tasks. Most importantly, it can reliably predict the relative performance of different policies in a number of generalization scenarios, including the transfer to the real-world of policies trained in simulation for an image-based robotic manipulation task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا