ﻻ يوجد ملخص باللغة العربية
There are demographic biases in current models used for facial recognition (FR). Our Balanced Faces In the Wild (BFW) dataset serves as a proxy to measure bias across ethnicity and gender subgroups, allowing one to characterize FR performances per subgroup. We show performances are non-optimal when a single score threshold is used to determine whether sample pairs are genuine or imposter. Across subgroups, performance ratings vary from the reported across the entire dataset. Thus, claims of specific error rates only hold true for populations matching that of the validation data. We mitigate the imbalanced performances using a novel domain adaptation learning scheme on the facial features extracted using state-of-the-art. Not only does this technique balance performance, but it also boosts the overall performance. A benefit of the proposed is to preserve identity information in facial features while removing demographic knowledge in the lower dimensional features. The removal of demographic knowledge prevents future potential biases from being injected into decision-making. This removal satisfies privacy concerns. We explore why this works qualitatively; we also show quantitatively that subgroup classifiers can no longer learn from the features mapped by the proposed.
Recently, image-to-image translation has been made much progress owing to the success of conditional Generative Adversarial Networks (cGANs). And some unpaired methods based on cycle consistency loss such as DualGAN, CycleGAN and DiscoGAN are really
We present SfSNet, an end-to-end learning framework for producing an accurate decomposition of an unconstrained human face image into shape, reflectance and illuminance. SfSNet is designed to reflect a physical lambertian rendering model. SfSNet lear
While deep face recognition has benefited significantly from large-scale labeled data, current research is focused on leveraging unlabeled data to further boost performance, reducing the cost of human annotation. Prior work has mostly been in control
Face detection methods have relied on face datasets for training. However, existing face datasets tend to be in small scales for face learning in both constrained and unconstrained environments. In this paper, we first introduce our large-scale image
Privacy considerations and bias in datasets are quickly becoming high-priority issues that the computer vision community needs to face. So far, little attention has been given to practical solutions that do not involve collection of new datasets. In