ﻻ يوجد ملخص باللغة العربية
Trading in Over-The-Counter (OTC) markets is facilitated by broker-dealers, in comparison to public exchanges, e.g., the New York Stock Exchange (NYSE). Dealers play an important role in stabilizing prices and providing liquidity in OTC markets. We apply machine learning methods to model and predict the trading behavior of OTC dealers for US corporate bonds. We create sequences of daily historical transaction reports for each dealer over a vocabulary of US corporate bonds. Using this history of dealer activity, we predict the future trading decisions of the dealer. We consider a range of neural network-based prediction models. We propose an extension, the Pointwise-Product ReZero (PPRZ) Transformer model, and demonstrate the improved performance of our model. We show that individual history provides the best predictive model for the most active dealers. For less active dealers, a collective model provides improved performance. Further, clustering dealers based on their similarity can improve performance. Finally, prediction accuracy varies based on the activity level of both the bond and the dealer.
The Black-Scholes Option pricing model (BSOPM) has long been in use for valuation of equity options to find the prices of stocks. In this work, using BSOPM, we have come up with a comparative analytical approach and numerical technique to find the pr
Electronic platform has been increasingly popular for the execution of large orders among asset managers dealing desks. Properly monitoring each individual trade by the appropriate Transaction Cost Analysis (TCA) is the first key step towards this el
This paper presents a deep learning framework based on Long Short-term Memory Network(LSTM) that predicts price movement of cryptocurrencies from trade-by-trade data. The main focus of this study is on predicting short-term price changes in a fixed t
In this paper, we investigate the cooling-off effect (opposite to the magnet effect) from two aspects. Firstly, from the viewpoint of dynamics, we study the existence of the cooling-off effect by following the dynamical evolution of some financial va
The distribution of the return intervals $tau$ between volatilities above a threshold $q$ for financial records has been approximated by a scaling behavior. To explore how accurate is the scaling and therefore understand the underlined non-linear mec