ﻻ يوجد ملخص باللغة العربية
In many cases, groundwater flow in an unconfined aquifer can be simplified to a one-dimensional Sturm-Liouville model of the form: begin{equation*} x(t)+lambda x(t)=h(t)+varepsilon f(x(t)),hspace{.1in}tin(0,pi) end{equation*} subject to non-local boundary conditions begin{equation*} x(0)=h_1+varepsiloneta_1(x)text{ and } x(pi)=h_2+varepsiloneta_2(x). end{equation*} In this paper, we study the existence of solutions to the above Sturm-Liouville problem under the assumption that $varepsilon$ is a small parameter. Our method will be analytical, utilizing the implicit function theorem and its generalizations.
In this paper, we consider a family of second-order elliptic systems subject to a periodically oscillating Robin boundary condition. We establish the qualitative homogenization theorem on any Lipschitz domains satisfying a non-resonance condition. We
We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.
In this paper we develop the global symbolic calculus of pseudo-differential operators generated by a boundary value problem for a given (not necessarily self-adjoint or elliptic) differential operator. For this, we also establish elements of a non-s
This paper considers boundary value problems for a class of singular elliptic operators which appear naturally in the study of asymptotically anti-de Sitter (aAdS) spacetimes. These problems involve a singular Bessel operator acting in the normal dir
We construct an expression for the Green function of a differential operator satisfying nonlocal, homogeneous boundary conditions starting from the fundamental solution of the differential operator. This also provides the solution to the boundary val