ﻻ يوجد ملخص باللغة العربية
Today we have quite stringent constraints on possible violations of the Weak Equivalence Principle from the comparison of the acceleration of test-bodies of different composition in Earths gravitational field. In the present paper, we propose a test of the Weak Equivalence Principle in the strong gravitational field of black holes. We construct a relativistic reflection model in which either the massive particles of the gas of the accretion disk or the photons emitted by the disk may not follow the geodesics of the spacetime. We employ our model to analyze the reflection features of a NuSTAR spectrum of the black hole binary EXO 1846-031 and we constrain two parameters that quantify a possible violation of the Weak Equivalence Principle by massive particles and X-ray photons, respectively.
We study the equivalence principle, regarded as the cornerstone of general relativity, by analyzing the deformation observable of black hole shadows. Such deformation can arise from new physics and may be expressed as a phenomenological violation of
Numerical simulations of the effect of a long-range scalar interaction (LRSI) acting only on nonbaryonic dark matter, with strength comparable to gravity, show patterns of disruption of satellites that can agree with what is seen in the Milky Way. Th
The recent LIGO detection of gravitational waves from black-hole binaries offers the exciting possibility of testing gravitational theories in the previously inaccessible strong-field, highly relativistic regime. While the LIGO detections are so far
Collisions of particles in black holes ergospheres may result in an arbitrarily large center of mass energy. This led recently to the suggestion (Banados et al., 2009) that black holes can act as ultimate particle accelerators. If the energy of an ou
The detection of the high-energy ($sim290$ TeV) neutrino coincident with the flaring blazar TXS 0506+056, the first and only $3sigma$ neutrino-source association to date, provides new, multimessenger tests of the weak equivalence principle (WEP) and