ترغب بنشر مسار تعليمي؟ اضغط هنا

TLSAN: Time-aware Long- and Short-term Attention Network for Next-item Recommendation

79   0   0.0 ( 0 )
 نشر من قبل Tsing Zhang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, deep neural networks are widely applied in recommender systems for their effectiveness in capturing/modeling users preferences. Especially, the attention mechanism in deep learning enables recommender systems to incorporate various features in an adaptive way. Specifically, as for the next item recommendation task, we have the following three observations: 1) users sequential behavior records aggregate at time positions (time-aggregation), 2) users have personalized taste that is related to the time-aggregation phenomenon (personalized time-aggregation), and 3) users short-term interests play an important role in the next item prediction/recommendation. In this paper, we propose a new Time-aware Long- and Short-term Attention Network (TLSAN) to address those observations mentioned above. Specifically, TLSAN consists of two main components. Firstly, TLSAN models personalized time-aggregation and learn user-specific temporal taste via trainable personalized time position embeddings with category-aware correlations in long-term behaviors. Secondly, long- and short-term feature-wise attention layers are proposed to effectively capture users long- and short-term preferences for accurate recommendation. Especially, the attention mechanism enables TLSAN to utilize users preferences in an adaptive way, and its usage in long- and short-term layers enhances TLSANs ability of dealing with sparse interaction data. Extensive experiments are conducted on Amazon datasets from different fields (also with different size), and the results show that TLSAN outperforms state-of-the-art baselines in both capturing users preferences and performing time-sensitive next-item recommendation.



قيم البحث

اقرأ أيضاً

The next location recommendation is at the core of various location-based applications. Current state-of-the-art models have attempted to solve spatial sparsity with hierarchical gridding and model temporal relation with explicit time intervals, whil e some vital questions remain unsolved. Non-adjacent locations and non-consecutive visits provide non-trivial correlations for understanding a users behavior but were rarely considered. To aggregate all relevant visits from user trajectory and recall the most plausible candidates from weighted representations, here we propose a Spatio-Temporal Attention Network (STAN) for location recommendation. STAN explicitly exploits relative spatiotemporal information of all the check-ins with self-attention layers along the trajectory. This improvement allows a point-to-point interaction between non-adjacent locations and non-consecutive check-ins with explicit spatiotemporal effect. STAN uses a bi-layer attention architecture that firstly aggregates spatiotemporal correlation within user trajectory and then recalls the target with consideration of personalized item frequency (PIF). By visualization, we show that STAN is in line with the above intuition. Experimental results unequivocally show that our model outperforms the existing state-of-the-art methods by 9-17%.
102 - Kai Zhang , Hao Qian , Qi Liu 2021
Recent studies in recommender systems have managed to achieve significantly improved performance by leveraging reviews for rating prediction. However, despite being extensively studied, these methods still suffer from some limitations. First, previou s studies either encode the document or extract latent sentiment via neural networks, which are difficult to interpret the sentiment of reviewers intuitively. Second, they neglect the personalized interaction of reviews with user/item, i.e., each review has different contributions when modeling the sentiment preference of user/item. To remedy these issues, we propose a Sentiment-aware Interactive Fusion Network (SIFN) for review-based item recommendation. Specifically, we first encode user/item reviews via BERT and propose a light-weighted sentiment learner to extract semantic features of each review. Then, we propose a sentiment prediction task that guides the sentiment learner to extract sentiment-aware features via explicit sentiment labels. Finally, we design a rating prediction task that contains a rating learner with an interactive and fusion module to fuse the identity (i.e., user and item ID) and each review representation so that various interactive features can synergistically influence the final rating score. Experimental results on five real-world datasets demonstrate that the proposed model is superior to state-of-the-art models.
Next basket recommendation, which aims to predict the next a few items that a user most probably purchases given his historical transactions, plays a vital role in market basket analysis. From the viewpoint of item, an item could be purchased by diff erent users together with different items, for different reasons. Therefore, an ideal recommender system should represent an item considering its transaction contexts. Existing state-of-the-art deep learning methods usually adopt the static item representations, which are invariant among all of the transactions and thus cannot achieve the full potentials of deep learning. Inspired by the pre-trained representations of BERT in natural language processing, we propose to conduct context-aware item representation for next basket recommendation, called Item Encoder Representations from Transformers (IERT). In the offline phase, IERT pre-trains deep item representations conditioning on their transaction contexts. In the online recommendation phase, the pre-trained model is further fine-tuned with an additional output layer. The output contextualized item embeddings are used to capture users sequential behaviors and general tastes to conduct recommendation. Experimental results on the Ta-Feng data set show that IERT outperforms the state-of-the-art baseline methods, which demonstrated the effectiveness of IERT in next basket representation.
Recommender systems objectives can be broadly characterized as modeling user preferences over short-or long-term time horizon. A large body of previous research studied long-term recommendation through dimensionality reduction techniques applied to t he historical user-item interactions. A recently introduced session-based recommendation setting highlighted the importance of modeling short-term user preferences. In this task, Recurrent Neural Networks (RNN) have shown to be successful at capturing the nuances of users interactions within a short time window. In this paper, we evaluate RNN-based models on both short-term and long-term recommendation tasks. Our experimental results suggest that RNNs are capable of predicting immediate as well as distant user interactions. We also find the best performing configuration to be a stacked RNN with layer normalization and tied item embeddings.
Both reviews and user-item interactions (i.e., rating scores) have been widely adopted for user rating prediction. However, these existing techniques mainly extract the latent representations for users and items in an independent and static manner. T hat is, a single static feature vector is derived to encode her preference without considering the particular characteristics of each candidate item. We argue that this static encoding scheme is difficult to fully capture the users preference. In this paper, we propose a novel context-aware user-item representation learning model for rating prediction, named CARL. Namely, CARL derives a joint representation for a given user-item pair based on their individual latent features and latent feature interactions. Then, CARL adopts Factorization Machines to further model higher-order feature interactions on the basis of the user-item pair for rating prediction. Specifically, two separate learning components are devised in CARL to exploit review data and interaction data respectively: review-based feature learning and interaction-based feature learning. In review-based learning component, with convolution operations and attention mechanism, the relevant features for a user-item pair are extracted by jointly considering their corresponding reviews. However, these features are only review-driven and may not be comprehensive. Hence, interaction-based learning component further extracts complementary features from interaction data alone, also on the basis of user-item pairs. The final rating score is then derived with a dynamic linear fusion mechanism. Experiments on five real-world datasets show that CARL achieves significantly better rating prediction accuracy than existing state-of-the-art alternatives. Also, with attention mechanism, we show that the relevant information in reviews can be highlighted to interpret the rating prediction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا