ﻻ يوجد ملخص باللغة العربية
Most online multi-object trackers perform object detection stand-alone in a neural net without any input from tracking. In this paper, we present a new online joint detection and tracking model, TraDeS (TRAck to DEtect and Segment), exploiting tracking clues to assist detection end-to-end. TraDeS infers object tracking offset by a cost volume, which is used to propagate previous object features for improving current object detection and segmentation. Effectiveness and superiority of TraDeS are shown on 4 datasets, including MOT (2D tracking), nuScenes (3D tracking), MOTS and Youtube-VIS (instance segmentation tracking). Project page: https://jialianwu.com/projects/TraDeS.html.
Driven by recent advances in object detection with deep neural networks, the tracking-by-detection paradigm has gained increasing prevalence in the research community of multi-object tracking (MOT). It has long been known that appearance information
Current multi-object tracking and segmentation (MOTS) methods follow the tracking-by-detection paradigm and adopt convolutions for feature extraction. However, as affected by the inherent receptive field, convolution based feature extraction inevitab
This paper improves state-of-the-art visual object trackers that use online adaptation. Our core contribution is an offline meta-learning-based method to adjust the initial deep networks used in online adaptation-based tracking. The meta learning is
Object tracking can be formulated as finding the right object in a video. We observe that recent approaches for class-agnostic tracking tend to focus on the finding part, but largely overlook the object part of the task, essentially doing a template
We study the problem of detecting human-object interactions (HOI) in static images, defined as predicting a human and an object bounding box with an interaction class label that connects them. HOI detection is a fundamental problem in computer vision