ترغب بنشر مسار تعليمي؟ اضغط هنا

The Changing Look Blazar B2 1420+32

128   0   0.0 ( 0 )
 نشر من قبل Hora Mishra
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blazars are active galactic nuclei with their relativistic jets pointing toward the observer, with two major sub-classes, the flat spectrum radio quasars and BL Lac objects. We present multi-wavelength photometric and spectroscopic monitoring observations of the blazar, B2 1420+32, focusing on its outbursts in 2018-2020. Multi-epoch spectra show that the blazar exhibited large scale spectral variability in both its continuum and line emission, accompanied by dramatic gamma-ray and optical variability by factors of up to 40 and 15, respectively, on week to month timescales. Over the last decade, the gamma-ray and optical fluxes increased by factors of 1500 and 100, respectively. B2 1420+32 was an FSRQ with broad emission lines in 1995. Following a series of flares starting in 2018, it transitioned between BL Lac and FSRQ states multiple times, with the emergence of a strong Fe pseudo continuum. Two spectra also contain components that can be modeled as single-temperature black bodies of 12,000 and 5,200 K. Such a collection of changing look features has never been observed previously in a blazar. We measure gamma-ray-optical and the inter-band optical lags implying emission region separations of less than 800 and 130 gravitational radii respectively. Since most emission line flux variations, except the Fe continuum, are within a factor of 2-3, the transitions between FSRQ and BL Lac classifications are mainly caused by the continuum variability. The large Fe continuum flux increase suggests the occurrence of dust sublimation releasing more Fe ions in the central engine and an energy transfer from the relativistic jet to sub-relativistic emission components.



قيم البحث

اقرأ أيضاً

We report the discovery of six active galactic nuclei (AGN) caught turning on during the first nine months of the Zwicky Transient Facility (ZTF) survey. The host galaxies were classified as LINERs by weak narrow forbidden line emission in their arch ival SDSS spectra, and detected by ZTF as nuclear transients. In five of the cases, we found via follow-up spectroscopy that they had transformed into broad-line AGN, reminiscent of the changing-look LINER iPTF 16bco. In one case, ZTF18aajupnt/AT2018dyk, follow-up HST UV and ground-based optical spectra revealed the transformation into a narrow-line Seyfert 1 (NLS1) with strong [Fe VII, X, XIV] and He II 4686 coronal lines. Swift monitoring observations of this source reveal bright UV emission that tracks the optical flare, accompanied by a luminous soft X-ray flare that peaks ~60 days later. Spitzer follow-up observations also detect a luminous mid-infrared flare implying a large covering fraction of dust. Archival light curves of the entire sample from CRTS, ATLAS, and ASAS-SN constrain the onset of the optical nuclear flaring from a prolonged quiescent state. Here we present the systematic selection and follow-up of this new class of changing-look LINERs, compare their properties to previously reported changing-look Seyfert galaxies, and conclude that they are a unique class of transients well-suited to test the uncertain physical processes associated with the LINER accretion state.
147 - Jun Yang 2021
The nearby face-on spiral galaxy NGC 2617 underwent an unambiguous inside-out multi-wavelength outburst in Spring 2013, and a dramatic Seyfert type change probably between 2010 and 2012, with the emergence of broad optical emission lines. To search f or the jet activity associated with this variable accretion activity, we carried out multi-resolution and multi-wavelength radio observations. Using the very long baseline interferometric (VLBI) observations with the European VLBI Network (EVN) at 1.7 and 5.0 GHz, we find that NGC 2617 shows a partially synchrotron self-absorbed compact radio core with a significant core shift, and an optically thin steep-spectrum jet extending towards the north up to about two parsecs in projection. We also observed NGC 2617 with the electronic Multi-Element Remotely Linked Interferometer Network (e-MERLIN) at 1.5 and 5.5 GHz, and revisited the archival data of the Very Large Array (VLA) and the Very Long Baseline Array (VLBA). The radio core had a stable flux density of about 1.4 mJy at 5.0 GHz between 2013 June and 2014 January, in agreement with the expectation of a supermassive black hole in the low accretion rate state. The northern jet component is unlikely to be associated with the inside-out outburst of 2013. Moreover, we report that most optically selected changing-look AGN at z<0.83 are sub-mJy radio sources in the existing VLA surveys at 1.4 GHz, and it is unlikely that they are more active than normal AGN at radio frequencies.
1ES 1927+654 is a nearby active galactic nucleus (AGN) which underwent a changing-look event in early 2018, developing prominent broad Balmer lines which were absent in previous observations. We have followed up this object in the X-rays with an ongo ing campaign that started in May 2018, and that includes 265 NICER (for a total of 678ks) and 14 Swift/XRT (26ks) observations, as well as three simultaneous XMM-Newton/NuSTAR (158/169 ks) exposures. In the X-rays, 1ES 1927+654 shows a behaviour unlike any previously known AGN. The source is extremely variable both in spectral shape and flux, and does not show any correlation between X-ray and UV flux on timescales of hours or weeks/months. After the outburst the power-law component almost completely disappeared, and the source showed an extremely soft continuum dominated by a blackbody component. The temperature of the blackbody increases with the luminosity, going from $kTsim 80$eV (for a 0.3--2keV luminosity of $L_{0.3-2}sim 10^{41.5}rm,erg,s^{-1}$) to $sim 200$eV (for $L_{0.3-2}sim 10^{44}rm,erg,s^{-1}$). The spectra show evidence of ionized outflows, and of a prominent feature at $sim 1$keV, which can be reproduced by a broad emission line. The unique characteristics of 1ES 1927+654 in the X-ray band suggest that it belongs to a new type of changing-look AGN. Future X-ray surveys might detect several more objects with similar properties.
90 - J. Yang 2021
Broad Balmer emission lines in active galactic nuclei (AGN) may display dramatic changes in amplitude, even disappearance and re-appearance in some sources. As a nearby galaxy at a redshift of z = 0.0264, Mrk 590 suffered such a cycle of Seyfert type changes between 2006 and 2017. Over the last fifty years, Mrk 590 also underwent a powerful continuum outburst and a slow fading from X-rays to radio wavelengths with a peak bolometric luminosity reaching about ten per cent of the Eddington luminosity. To track its past accretion and ejection activity, we performed very long baseline interferometry (VLBI) observations with the European VLBI Network (EVN) at 1.6 GHz in 2015. The EVN observations reveal a faint (~1.7 mJy) radio jet extending up to ~2.8 mas (projected scale ~1.4 pc) toward north, and probably resulting from the very intensive AGN activity. To date, such a parsec-scale jet is rarely seen in the known changing-look AGN. The finding of the faint jet provides further strong support for variable accretion as the origin of the type changes in Mrk 590.
We present the drastic transformation of the X-ray properties of the active galactic nucleus 1ES 1927+654, following a changing-look event. After the optical/UV outburst the power-law component, produced in the X-ray corona, disappeared, and the spec trum of 1ES 1927+65 instead became dominated by a blackbody component ($kTsim 80-120$ eV). This implies that the X-ray corona, ubiquitously found in AGN, was destroyed in the event. Our dense $sim 450$ day long X-ray monitoring shows that the source is extremely variable in the X-ray band. On long time scales the source varies up to $sim 4$ dex in $sim 100$ days, while on short timescales up to $sim2$ dex in $sim 8$ hours. The luminosity of the source is found to first show a strong dip down to $sim 10^{40}rm,erg,s^{-1}$, and then a constant increase in luminosity to levels exceeding the pre-outburst level $gtrsim $300 days after the optical event detection, rising up asymptotically to $sim 2times10^{44}rm,erg,s^{-1}$. As the X-ray luminosity of the source increases, the X-ray corona is recreated, and a very steep power-law component ($Gammasimeq 3$) reappears, and dominates the emission for 0.3-2 keV luminosities $gtrsim 10^{43.7}rm,erg,s^{-1}$, $sim 300$ days after the beginning of the event. We discuss possible origins of this event, and speculate that our observations could be explained by the interaction between the accretion flow and debris from a tidally disrupted star. Our results show that changing-look events can be associated with dramatic and rapid transformations of the innermost regions of accreting SMBHs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا