ﻻ يوجد ملخص باللغة العربية
Vector-based cellular automata (CA) based on real land-parcel has become an important trend in current urban development simulation studies. Compared with raster-based and parcel-based CA models, vector CA models are difficult to be widely used because of their complex data structures and technical difficulties. The UrbanVCA, a brand-new vector CA-based urban development simulation framework was proposed in this study, which supports multiple machine-learning models. To measure the simulation accuracy better, this study also first proposes a vector-based landscape index (VecLI) model based on the real land-parcels. Using Shunde, Guangdong as the study area, the UrbanVCA simulates multiple types of urban land-use changes at the land-parcel level have achieved a high accuracy (FoM=0.243) and the landscape index similarity reaches 87.3%. The simulation results in 2030 show that the eco-protection scenario can promote urban agglomeration and reduce ecological aggression and loss of arable land by at least 60%. Besides, we have developed and released UrbanVCA software for urban planners and researchers.
Cellular Automata (CA) are widely used to model the dynamics within complex land use and land cover (LULC) systems. Past CA model research has focused on improving the technical modeling procedures, and only a few studies have sought to improve our u
Desktop GIS applications, such as ArcGIS and QGIS, provide tools essential for conducting suitability analysis, an activity that is central in formulating a land-use plan. But, when it comes to building complicated land-use suitability models, these
This paper studies three classes of cellular automata from a computational point of view: freezing cellular automata where the state of a cell can only decrease according to some order on states, cellular automata where each cell only makes a bounded
Nitrogen dioxide (NO$_2$) is a primary constituent of traffic-related air pollution and has well established harmful environmental and human-health impacts. Knowledge of the spatiotemporal distribution of NO$_2$ is critical for exposure and risk asse
In this paper we propose the use of multiple local binary patterns(LBPs) to effectively classify land use images. We use the UC Merced 21 class land use image dataset. Task is challenging for classification as the dataset contains intra class variabi