ﻻ يوجد ملخص باللغة العربية
Understanding the role of entanglement and its dynamics in composite quantum systems lies at the forefront of quantum matter studies. Here we investigate competing entanglement dynamics in an open Ising-spin chain that allows for exchange with an external central qudit probe. We propose a new metric dubbed the multipartite entanglement loss (MEL) that provides an upper bound on the amount of information entropy shared between the spins and the qudit probe that serves to unify physical spin-fluctuations, Quantum Fisher Information (QFI), and bipartite entanglement entropy.
We study the out-of-equilibrium dynamics in the quantum Ising model with power-law interactions and positional disorder. For arbitrary dimension $d$ and interaction range $alpha geq d$ we analytically find a stretched exponential decay of the global
The electronic spin degrees of freedom in semiconductors typically have decoherence times that are several orders of magnitude longer than other relevant timescales. A solid-state quantum computer based on localized electron spins as qubits is theref
Quantum algorithms are known for presenting more efficient solutions to certain computational tasks than any corresponding classical algorithm. It has been thought that the origin of the power of quantum computation has its roots in non-classical cor
Coherent oscillations between any two levels from four nuclear spin states of I=3/2 have been demonstrated in a nanometre-scale NMR semiconductor device, where nuclear spins are all-electrically controlled. Using this device, we discuss quantum logic
The ability to harness the dynamics of quantum information and entanglement is necessary for the development of quantum technologies and the study of complex quantum systems. On the theoretical side the dynamics of quantum information is a topic that