ﻻ يوجد ملخص باللغة العربية
The interplay between strong electron correlation and band topology is at the forefront of condensed matter research. As a direct consequence of correlation, magnetism enriches topological phases and also has promising functional applications. However, the influence of topology on magnetism remains unclear, and the main research effort has been limited to ground state magnetic orders. Here we report a novel order above the magnetic transition temperature in magnetic Weyl semimetal (WSM) CeAlGe. Such order shows a number of anomalies in electrical and thermal transport, and neutron scattering measurements. We attribute this order to the coupling of Weyl fermions and magnetic fluctuations originating from a three-dimensional Seiberg-Witten monopole, which qualitatively agrees well with the observations. Our work reveals a prominent role topology may play in tailoring electron correlation beyond ground state ordering, and offers a new avenue to investigate emergent electronic properties in magnetic topological materials.
Nodal semimetals are a unique platform to explore topological signatures of the unusual band structure that can manifest by accumulating a nontrivial phase in quantum oscillations. Here we report a study of the de Haasvan Alphen oscillations of the c
We show that novel low temperature properties of bulk SmB6, including the sudden growth of the de Haas-van Alphen amplitude (and heat capacity) originating from the bulk at millikelvin temperatures and a previously unreported linear-in-temperature bu
Charge order has emerged as a generic feature of doped cuprates, leading to important questions about its origin and its relation to superconductivity. Recent experiments on two classes of hole doped cuprates indicate a novel d-wave symmetry for the
Strong spin-orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin-orbit and strong electron-electron interactions is just beginning to be understood. Central to this eme
Combining strong electron correlations [1-4] and nontrivial electronic topology [5] holds great promise for discovery. So far, this regime has been rarely accessed and systematic studies are much needed to advance the field. Here we demonstrate the c