ﻻ يوجد ملخص باللغة العربية
Topological structures of electromagnetic fields could give access to nontrivial light-matter interactions and additional degrees of freedom for information and energy transfer. A characteristic example of such electromagnetic excitations are space-time non-separable single-cycle pulses, the exact solutions of Maxwell equation of toroidal topology predicted by Hellwarth and Nouchi in 1996 and recently observed experimentally. Here we introduce a new family of electromagnetic excitation of toroidal topology with increasing complexity in which the Hellwarth-Nouchi pulse is just the simplest member. The electromagnetic excitations of the new family can be parametrised by a single real number and exhibit skyrmionic structures of various orders. They feature multiple singularities in the electromagnetic and Poynting vector fields are accompanied by the fractal-like distributions of energy backflow. The generalized family of toroidal electromagnetic excitation with salient topologies are of interest for transient light-matter interactions, ultrafast optics, spectroscopy, and toroidal electrodynamics.
Electromagnetic pulses are typically treated as space-time (or space-frequency) separable solutions of Maxwells equations, where spatial and temporal (spectral) dependence can be treated separately. In contrast to this traditional viewpoint, recent a
The method of Doppler - free comb - spectroscopy for dipole transitions was proposed. The calculations for susceptibility spectrum for moving two-level atoms driving by strong counter propagating combs have been done. The used theoretical method base
We investigate propagation of light pulses in photonic crystals in the vicinity of the zero-diffraction point. We show that Gaussian pulses due to nonzero width of their spectrum spread weakly in space and time during the propagation. We also find th
A two-level medium, described by the Maxwell-Bloch (MB) system, is engraved by establishing a standing cavity wave with a linearly polarized electromagnetic field that drives the medium on both ends. A light pulse, polarized along the other direction
We give an exact self-consistent operator description of the spin and orbital angular momenta, position, and spin-orbit interactions of nonparaxial light in free space. Both quantum-operator formalism and classical energy-flow approach are presented.