ﻻ يوجد ملخص باللغة العربية
We report on the electrostatic trapping of neutral SrF molecules. The molecules are captured from a cryogenic buffer-gas beam source into the moving traps of a 4.5 m long traveling-wave Stark decelerator. The SrF molecules in $X^2Sigma^+(v=0, N=1)$ state are brought to rest as the velocity of the moving traps is gradually reduced from 190 m/s to zero. The molecules are held for up to 50 ms in multiple electric traps of the decelerator. The trapped packets have a volume (FWHM) of 1 mm$^{3}$ and a velocity spread of 5(1) m/s which corresponds to a temperature of $60(20)$ mK. Our result demonstrates a factor 3 increase in the molecular mass that has been Stark-decelerated and trapped. Heavy molecules (mass$>$100 amu) offer a highly increased sensitivity to probe physics beyond the Standard Model. This work significantly extends the species of neutral molecules of which slow beams can be created for collision studies, precision measurement and trapping experiments.
We present an analysis of the deceleration and trapping of heavy diatomic molecules in low-field seeking states by a moving electric potential. This moving potential is created by a ring-decelerator, which consists of a series of ring-shaped electrod
We have recently demonstrated static trapping of ammonia isotopologues in a decelerator that consists of a series of ring-shaped electrodes to which oscillating high voltages are applied [Quintero-P{e}rez et al., Phys. Rev. Lett. 110, 133003 (2013)].
We have focused and decelerated benzonitrile (C$_7$H$_5$N) molecules from a molecular beam, using an array of time-varying inhomogeneous electric fields in alternating gradient configuration. Benzonitrile is prototypical for large asymmetric top mole
Stark deceleration has been utilized for slowing and trapping several species of neutral, ground-state polar molecules generated in a supersonic beam expansion. Due to the finite physical dimension of the electrode array and practical limitations of
We produce SO_2 molecules with a centre of mass velocity near zero using a Stark decelerator. Since the initial kinetic energy of the supersonic SO_2 molecular beam is high, and the removed kinetic energy per stage is small, 326 deceleration stages a