Coherence and entanglement of inherently long-lived spin pairs in diamond


الملخص بالإنكليزية

Understanding and protecting the coherence of individual quantum systems is a central challenge in quantum science and technology. Over the last decades, a rich variety of methods to extend coherence have been developed. A complementary approach is to look for naturally occurring systems that are inherently protected against decoherence. Here, we show that pairs of identical nuclear spins in solids form intrinsically long-lived quantum systems. We study three carbon-13 pairs in diamond and realize high-fidelity measurements of their quantum states using a single NV center in their vicinity. We then reveal that the spin pairs are robust to external perturbations due to a unique combination of three phenomena: a clock transition, a decoherence-free subspace, and a variant on motional narrowing. The resulting inhomogeneous dephasing time is $T_2^* = 1.9(3)$ minutes, the longest reported for individually controlled qubits. Finally, we develop complete control and realize an entangled state between two spin-pair qubits through projective parity measurements. These long-lived qubits are abundantly present in diamond and other solids, and provide new opportunities for quantum sensing, quantum information processing, and quantum networks.

تحميل البحث