ﻻ يوجد ملخص باللغة العربية
Materials informatics has emerged as a promisingly new paradigm for accelerating materials discovery and design. It exploits the intelligent power of machine learning methods in massive materials data from experiments or simulations to seek for new materials, functionality, principles, etc. Developing specialized facility to generate, collect, manage, learn and mine large-scale materials data is crucial to materials informatics. We herein developed an artificial-intelligence-aided data-driven infrastructure named Jilin Artificial-intelligence aided Materials-design Integrated Package (JAMIP), which is an open-source Python framework to meet the research requirements of computational materials informatics. It is integrated by materials production factory, high-throughput first-principles calculations engine, automatic tasks submission and monitoring progress, data extraction, management and storage system, and artificial intelligence machine learning based data mining functions. We have integrated specific features such as inorganic crystal structure prototype database to facilitate high-throughput calculations and essential modules associated with machine learning studies of functional materials. We demonstrated how our developed code is useful in exploring materials informatics of optoelectronic semiconductors by taking halide perovskites as typical case. By obeying the principles of automation, extensibility, reliability and intelligence, the JAMIP code is a promisingly powerful tool contributing to the fast-growing field of computational materials informatics.
Materials Cloud is a platform designed to enable open and seamless sharing of resources for computational science, driven by applications in materials modelling. It hosts 1) archival and dissemination services for raw and curated data, together with
The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) tech
Heterogeneous catalysis is an example of a complex materials function, governed by an intricate interplay of several processes, e.g., the different surface chemical reactions, and the dynamic re-structuring of the catalyst material at reaction condit
Combinatorial experiments involve synthesis of sample libraries with lateral composition gradients requiring spatially-resolved characterization of structure and properties. Due to maturation of combinatorial methods and their successful application
The Open Databases Integration for Materials Design (OPTIMADE) consortium has designed a universal application programming interface (API) to make materials databases accessible and interoperable. We outline the first stable release of the specificat