ﻻ يوجد ملخص باللغة العربية
We carry out the first detailed calculations of jet production associated with $W$ gauge bosons in Pb+Pb collisions at the Large Hadron Collider (LHC). In our calculations, the production of $W$+jet in p+p collisions as a reference is obtained by Sherpa, which performs next-to-leading-order matrix element calculations matched to the resummation of parton shower simulations, while jet propagation and medium response in the quark-gluon plasma are simulated with the Linear Boltzmann Transport (LBT) model. We provide numerical predictions on seven observables of $W$+jet production with jet quenching in Pb+Pb collisions: the medium modification factor for the tagged jet cross sections $I_{AA}$, the distribution in invariant mass between the two leading jets in $N_{jets}ge 2$ events $m_{jj}$, the missing $p_T$ or the vector sum of the lepton and jet transverse momentum $|vec{p}_T^{Miss}|$, the summed scalar $p_T$ of all the jets in an event $S_T$, transverse momentum imbalance $x_{jW}$, average number of jets per $W$ boson $R_{jW}$, and azimuthal angle between the $W$ boson and jets $Delta phi_{jW}$. The distinct nuclear modifications of these seven observables in Pb+Pb relative to that in p+p collisions are presented with detailed discussions.
We report in this work the production of $W^+W^-$ pairs gauge bosons associated with 0, 1 and 2 jets in proton-proton collisions at LHC with an energy of 14 TeV in the center of mass. These processes are produced at leading-order (LO) and next-to-lea
We illustrate with both a Boltzmann diffusion equation and full simulations of jet propagation in heavy-ion collisions within the Linear Boltzmann Transport (LBT) model that the spatial gradient of the jet transport coefficient perpendicular to the p
In this work we present the implementation of generators for W and Z bosons in association with two jets interfaced to parton showers using the POWHEG BOX. We incorporate matrix elements from the parton-level Monte Carlo program MCFM in the POWHEG BO
Angular correlations between heavy quark (HQ) and its tagged jet are potentially new tools to gain insight into the in-medium partonic interactions in relativistic heavy-ion collisions. In this work, we present the first theoretical study on the radi
In high energy nuclear collisions, heavy flavor tagged jets are useful hard probes to study the properties of the quark-gluon plasma (QGP). In this talk, we present the first theoretical prediction of the $D^0$ meson radial distributions in jets rela