ﻻ يوجد ملخص باللغة العربية
This paper presents a novel natural gradient and Hessian-free (NGHF) optimisation framework for neural network training that can operate efficiently in a distributed manner. It relies on the linear conjugate gradient (CG) algorithm to combine the natural gradient (NG) method with local curvature information from Hessian-free (HF) or other second-order methods. A solution to a numerical issue in CG allows effective parameter updates to be generated with far fewer CG iterations than usually used (e.g. 5-8 instead of 200). This work also presents a novel preconditioning approach to improve the progress made by individual CG iterations for models with shared parameters. Although applicable to other training losses and model structures, NGHF is investigated in this paper for lattice-based discriminative sequence training for hybrid hidden Markov model acoustic models using a standard recurrent neural network, long short-term memory, and time delay neural network models for output probability calculation. Automatic speech recognition experiments are reported on the multi-genre broadcast data set for a range of different acoustic model types. These experiments show that NGHF achieves larger word error rate reductions than standard stochastic gradient descent or Adam, while requiring orders of magnitude fewer parameter updates.
Self-training is one of the earliest and simplest semi-supervised methods. The key idea is to augment the original labeled dataset with unlabeled data paired with the models prediction (i.e. the pseudo-parallel data). While self-training has been ext
Recent studies have shown that neural models can achieve high performance on several sequence labelling/tagging problems without the explicit use of linguistic features such as part-of-speech (POS) tags. These models are trained only using the charac
Highly distributed training of Deep Neural Networks (DNNs) on future compute platforms (offering 100 of TeraOps/s of computational capacity) is expected to be severely communication constrained. To overcome this limitation, new gradient compression t
Large-scale distributed training of Deep Neural Networks (DNNs) on state-of-the-art platforms is expected to be severely communication constrained. To overcome this limitation, numerous gradient compression techniques have been proposed and have demo
Many applications today, such as NLP, network analysis, and code analysis, rely on semantically embedding objects into low-dimensional fixed-length vectors. Such embeddings naturally provide a way to perform useful downstream tasks, such as identifyi