ترغب بنشر مسار تعليمي؟ اضغط هنا

How to Train Your Flare Prediction Model: Revisiting Robust Sampling of Rare Events

71   0   0.0 ( 0 )
 نشر من قبل Azim Ahmadzadeh
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a case study of solar flare forecasting by means of metadata feature time series, by treating it as a prominent class-imbalance and temporally coherent problem. Taking full advantage of pre-flare time series in solar active regions is made possible via the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark dataset; a partitioned collection of multivariate time series of active region properties comprising 4075 regions and spanning over 9 years of the Solar Dynamics Observatory (SDO) period of operations. We showcase the general concept of temporal coherence triggered by the demand of continuity in time series forecasting and show that lack of proper understanding of this effect may spuriously enhance models performance. We further address another well-known challenge in rare event prediction, namely, the class-imbalance issue. The SWAN-SF is an appropriate dataset for this, with a 60:1 imbalance ratio for GOES M- and X-class flares and a 800:1 for X-class flares against flare-quiet instances. We revisit the main remedies for these challenges and present several experiments to illustrate the exact impact that each of these remedies may have on performance. Moreover, we acknowledge that some basic data manipulation tasks such as data normalization and cross validation may also impact the performance -- we discuss these problems as well. In this framework we also review the primary advantages and disadvantages of using true skill statistic and Heidke skill score, as two widely used performance verification metrics for the flare forecasting task. In conclusion, we show and advocate for the benefits of time series vs. point-in-time forecasting, provided that the above challenges are measurably and quantitatively addressed.



قيم البحث

اقرأ أيضاً

In many robotic applications, it is crucial to maintain a belief about the state of a system, which serves as input for planning and decision making and provides feedback during task execution. Bayesian Filtering algorithms address this state estimat ion problem, but they require models of process dynamics and sensory observations and the respective noise characteristics of these models. Recently, multiple works have demonstrated that these models can be learned by end-to-end training through differentiab
Energy-Based Models (EBMs), also known as non-normalized probabilistic models, specify probability density or mass functions up to an unknown normalizing constant. Unlike most other probabilistic models, EBMs do not place a restriction on the tractab ility of the normalizing constant, thus are more flexible to parameterize and can model a more expressive family of probability distributions. However, the unknown normalizing constant of EBMs makes training particularly difficult. Our goal is to provide a friendly introduction to modern approaches for EBM training. We start by explaining maximum likelihood training with Markov chain Monte Carlo (MCMC), and proceed to elaborate on MCMC-free approaches, including Score Matching (SM) and Noise Constrastive Estimation (NCE). We highlight theoretical connections among these three approaches, and end with a brief survey on alternative training methods, which are still under active research. Our tutorial is targeted at an audience with basic understanding of generative models who want to apply EBMs or start a research project in this direction.
216 - Li Liu , Mengge He , Guanghui Xu 2021
Reading and writing research papers is one of the most privileged abilities that a qualified researcher should master. However, it is difficult for new researchers (eg{students}) to fully {grasp} this ability. It would be fascinating if we could trai n an intelligent agent to help people read and summarize papers, and perhaps even discover and exploit the potential knowledge clues to write novel papers. Although there have been existing works focusing on summarizing (emph{i.e.}, reading) the knowledge in a given text or generating (emph{i.e.}, writing) a text based on the given knowledge, the ability of simultaneously reading and writing is still under development. Typically, this requires an agent to fully understand the knowledge from the given text materials and generate correct and fluent novel paragraphs, which is very challenging in practice. In this paper, we propose a Deep ReAder-Writer (DRAW) network, which consists of a textit{Reader} that can extract knowledge graphs (KGs) from input paragraphs and discover potential knowledge, a graph-to-text textit{Writer} that generates a novel paragraph, and a textit{Reviewer} that reviews the generated paragraph from three different aspects. Extensive experiments show that our DRAW network outperforms considered baselines and several state-of-the-art methods on AGENDA and M-AGENDA datasets. Our code and supplementary are released at https://github.com/menggehe/DRAW.
Deep reinforcement learning (RL) has emerged as a promising approach for autonomously acquiring complex behaviors from low level sensor observations. Although a large portion of deep RL research has focused on applications in video games and simulate d control, which does not connect with the constraints of learning in real environments, deep RL has also demonstrated promise in enabling physical robots to learn complex skills in the real world. At the same time,real world robotics provides an appealing domain for evaluating such algorithms, as it connects directly to how humans learn; as an embodied agent in the real world. Learning to perceive and move in the real world presents numerous challenges, some of which are easier to address than others, and some of which are often not considered in RL research that focuses only on simulated domains. In this review article, we present a number of case studies involving robotic deep RL. Building off of these case studies, we discuss commonly perceived challenges in deep RL and how they have been addressed in these works. We also provide an overview of other outstanding challenges, many of which are unique to the real-world robotics setting and are not often the focus of mainstream RL research. Our goal is to provide a resource both for roboticists and machine learning researchers who are interested in furthering the progress of deep RL in the real world.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا