ﻻ يوجد ملخص باللغة العربية
How do pedestrians choose their paths within city street networks? Human path planning has been extensively studied at the aggregate level of mobility flows, and at the individual level with strictly designed behavioural experiments. However, a comprehensive, individual-level model of how humans select pedestrian paths in real urban environments is still lacking. Here, we analyze human path planning behaviour in a large dataset of individual pedestrians, whose GPS traces were continuously recorded as they pursued their daily goals. Through statistical analysis we reveal two robust empirical discoveries, namely that (1) people increasingly deviate from the shortest path as the distance between origin and destination increases, and (2) individual choices exhibit direction-dependent asymmetries when origin and destination are swapped. In order to address the above findings, which cannot be explained by existing models, we develop a vector-based navigation framework motivated by the neural evidence of direction-encoding cells in hippocampal brain networks, and by behavioural evidence of vector navigation in animals. Modelling pedestrian path preferences by vector-based navigation increases the models predictive power by 35%, compared to a model based on minimizing distance with stochastic effects. We show that these empirical findings and modelling results generalise across two major US cities with drastically different street networks, suggesting that vector-based navigation is a universal property of human path planning, independent of specific city environments. Our results offer a simple, unified explanation of numerous findings about human navigation, and posit a computational mechanism that may underlie the human capacity to efficiently navigate in environments at various scales.
In this paper, we propose a novel navigation system for mobile robots in pedestrian-rich sidewalk environments. Sidewalks are unique in that the pedestrian-shared space has characteristics of both roads and indoor spaces. Like vehicles on roads, pede
We present a new microscopic ODE-based model for pedestrian dynamics: the Gradient Navigation Model. The model uses a superposition of gradients of distance functions to directly change the direction of the velocity vector. The velocity is then integ
Individual neurons often produce highly variable responses over nominally identical trials, reflecting a mixture of intrinsic noise and systematic changes in the animals cognitive and behavioral state. In addition to investigating how noise and state
Most studies indicate that intelligence (g) is positively correlated with cortical thickness. However, the interindividual variability of cortical thickness has not been taken into account. In this study, we aimed to identify the association between
Modern inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots. Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging In