ﻻ يوجد ملخص باللغة العربية
The Planetary Instrument for X-ray Lithochemistry (PIXL) is a micro-focus X-ray fluorescence spectrometer mounted on the robotic arm of NASAs Perseverance rover. PIXL will acquire high spatial resolution observations of rock and soil chemistry, rapidly analyzing the elemental chemistry of a target surface. In 10 seconds, PIXL can use its powerful 120 micrometer diameter X-ray beam to analyze a single, sand-sized grain with enough sensitivity to detect major and minor rock-forming elements, as well as many trace elements. Over a period of several hours, PIXL can autonomously scan an area of the rock surface and acquire a hyperspectral map comprised of several thousand individual measured points.
An important and perhaps dominant source of dust in the martian atmosphere, dust devils play a key role in Mars climate. Datasets from previous landed missions have revealed dust devil activity, constrained their structures, and elucidated their dust
LaRa (Lander Radioscience) is an experiment on the ExoMars 2020 mission that uses the Doppler shift on the radio link due to the motion of the ExoMars platform tied to the surface of Mars with respect to the Earth ground stations (e.g. the deep space
Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for character
We introduce an instrument for a wide spectrum of experiments on gravities other than our planets. It is based on a large Atwood machine where one of the loads is a bucket equipped with a single board computer and different sensors. The computer is a
We propose a revolutionary way of studying the sur-face of Mars using a wind-driven network of mobile sensors- Gone with the Wind ON_Mars (GOWON). GOWON is envisioned to be a scalable, 100% self energy-generating and distributed system that allows in